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When are two collider events similar? Despite the simplicity and generality of this question, there
is no established notion of the distance between two events. To address this question, we develop
a metric for the space of collider events based on the earth mover’s distance: the “work” required
to rearrange the radiation pattern of one event into another. We expose interesting connections
between this metric and the structure of infrared- and collinear-safe observables, providing a novel
technique to quantify event modifications due to hadronization, pileup, and detector effects. We
showcase how this metrization unlocks powerful new tools for analyzing and visualizing collider
data without relying upon a choice of observables. More broadly, this framework paves the way for
data-driven collider phenomenology without specialized observables or machine learning models.

High-energy particle collisions produce a tremendous
number of intricately correlated particles, especially
when energetic quarks and gluons are involved. Behind
this apparent complexity, however, the overall flow of
energy in an event is a robust memory of its simpler
partonic origins [1–8]. Surprisingly, no definition of the
similarity between events presently exists that sharply
captures this correspondence. In the absence of a metric,
efforts typically fall back upon ad hoc methods such
as comparing specific observables [9–13] or matching
the pixels of calorimeter images [13–17]. These ap-
proaches suffer from significant pathologies: disparate
event topologies can give rise to identical observable val-
ues, while pixels lack stability under small perturbations.
A theoretically and experimentally robust definition of
the “distance” between events would profoundly expand
our ability to explore the structure of collider data and
unlock entirely new ways to probe events.

In this letter, we advocate for the earth (or energy)
mover’s distance (EMD) [18–22] as a metric for the space
of collider events. We propose a variant of the EMD,
inspired by Refs. [21, 22], that allows events with different
total energies to be sensibly compared. The EMD is the
minimum “work” required to rearrange one event E into
the other E ′ by movements of energy fij from particle i
in one event to particle j in the other:

EMD(E , E ′) = min
{fij}

∑
ij

fij
θij
R

+

∣∣∣∣∣∣
∑
i

Ei −
∑
j

E′j

∣∣∣∣∣∣ , (1)

fij ≥ 0,
∑
j

fij ≤ Ei,
∑
i

fij ≤ E′j ,
∑
ij

fij = Emin,

where i and j index particles in events E and E ′, respec-
tively, Ei is the particle energy, θij is an angular distance
between particles, and Emin = min(

∑
iEi,

∑
j E
′
j) is the

smaller of the two total energies. R is a parameter
that controls the relative importance of the two terms.
While energies and angles are used here for clarity, we
will use transverse momenta pT and rapidity-azimuth
(y, φ) distances for our applications relevant for the Large
Hadron Collider (LHC).
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FIG. 1. The optimal movement to rearrange one top jet
(red) into another (blue). Particles are shown as points in
the rapidity-azimuth plane with areas proportional to their
transverse momenta. Darker lines indicate more transverse
momentum movement. The energy mover’s distance in
Eq. (1) is the total “work” required to perform this rearrange-
ment.

The EMD that we propose in Eq. (1) has dimensions
of energy, where the first term quantifies the difference
between the two radiation patterns and the second term
accounts for the creation or destruction of energy. It is
a true metric (satisfying the triangle inequality) as long
as θij is a metric and R ≥ 1

2θmax, where θmax is the
maximum attainable angular distance between particles.
For instance, R must be at least the jet radius for conical
jets. Formally, the EMD metrizes the energy flow, as it
treats events differing only by soft particles or collinear
splittings identically. This hints at a deep connection to
infrared and collinear (IRC) safety of observables [23–26],
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which we explore further below.
A metric for comparing events is particularly relevant

for probing the substructure of jets [27–37], collimated
sprays of particles resulting from the fragmentation
and hadronization of high-energy quarks and gluons via
quantum chromodynamics (QCD). Here, we will consider
three classes of jets which have different intrinsic topolo-
gies: three-pronged boosted top quark jets, two-pronged
boostedW boson jets, and single-pronged QCD (quark or
gluon) jets. We generate proton-proton collision events
at the LHC with Pythia 8.235 [38] at

√
s = 14 TeV in-

cluding hadronization and multiple particle interactions.
Anti-kT jets [39] with a jet radius of 1.0 are clustered
using FastJet 3.3.1 [40], and up to two jets with pT ∈
[500, 550] GeV and |y| < 1.7 are kept. This pT selection is
representative of an intermediate energy range for jets at
the LHC and allows for sensitivity to the effects of both
terms in Eq. (1). Jets are longitudinally boosted and
rotated to center the jet four-momentum at (y, φ) = 0 as
well as to vertically align the principal component of the
constituent transverse momentum flow in the rapidity-
azimuth plane; this removes the dependence of the EMD
on these jet isometries.

We record the final-state hadrons, as well as the par-
tons (before hadronization) and the hard W/top decay
products, that are within a jet radius of the jet four-
momentum. We use the Python Optimal Transport [41]
library to compute EMDs with the minimal choice of
R = 1.0, the jet radius. The energy difference penalty
in Eq. (1) is implemented using a fictitious particle at
a distance R from all other particles. Fig. 1 shows the
optimal energy movement between two example top jets.

We begin by highlighting a remarkable mathematical
property of the EMD which provides a quantitative un-
derstanding of an observable’s sensitivity to the radiation
pattern. Specifically, we relate the EMD to additive
IRC-safe observables via the Kantorovich-Rubinstein [42]
duality theorem. Applying this theorem to our variant of
the EMD, we derive the following mathematical bound
between two events E and E ′:

1

RL

∣∣∣∣∣∣
∑
i

EiΦ(p̂i)−
∑
j

E′jΦ(p̂′j)

∣∣∣∣∣∣ ≤ EMD(E , E ′), (2)

where i, j index E , E ′, respectively, p̂i is the particle
angular position, and Φ is any L-Lipschitz function
(essentially, with gradient size bounded by L) which
vanishes at the center of the space (e.g. the jet axis).
The implications of Eq. (2) are simple yet profound:
the similarity of events according to the EMD metric
guarantees the closeness of their O =

∑M
i=1EiΦ(p̂i)

observable values in a precise way that depends on Φ.
By formulating IRC-safe observables in the language of
additive energy-weighted structures [43, 44], Eq. (2) can
be applied to provide a robust bound.

As a concrete example, we demonstrate how the
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FIG. 2. Two-dimensional histogram of the EMD between
30k QCD jets before and after hadronization versus the
corresponding β = 1 angularity modification. The red region
is excluded based on the bound in Eq. (3), shown as a dashed
red line. The bound is clearly satisfied and is nearly saturated
for EMD . 10 GeV.

EMD bounds hadronization modifications of jet angular-
ities [45] (see also Refs. [46–49]), λ(β) =

∑
i pT,iθ

β
i where

θi is the rapidity-azimuth distance to the jet axis. These
angularities are evidently of the form in Eq. (2) with
Φ(yi, φi) = (y2i +φ2i )

β/2, which for β ≥ 1 is a β-Lipschitz
function over our R = 1.0 jet cone, hence:

∆λ(β) = |λ(β)(E)− λ(β)(E ′)| ≤ β EMD(E , E ′). (3)

The EMD between two events yields a robust upper
bound of the difference in their β ≥ 1 angularity values.
This bound is borne out in Fig. 2, where the angularity
differences and EMDs are computed for the same QCD
jets before and after hadronization. For this jet pT
range, hadronization modifies events by EMD . 30 GeV
and correspondingly modifies λ(β=1) by no more than
this amount. The intuitive picture of parton-hadron
duality [5], that the energy flow in an event is robust
to nonperturbative effects, is quantified by considering
the EMD that these nonperturbative effects can induce.

A metric space is also useful for classification without
requiring specially designed observables or parametrized
machine learning algorithms. One of the simplest exam-
ples of a non-parametric classifier is the k-nearest neigh-
bor (kNN) algorithm [50], whereby a given event’s closest
k neighbors in a reference set are used to determine class
membership. We build a kNN classifier applied to the
problem of discriminating W jets from QCD jets using a
balanced training sample of 100k total jets. The classifier
output is the number of W jets among the k = 32 near-
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EMD: W Jets vs. QCD Jets
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√
s = 14 TeV

R = 1.0, pT ∈ [500, 550] GeV
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FIG. 3. ROC curves showing the boostedW classification per-
formance of a k = 32 nearest-neighbor EMD classifier, which
requires no choice of observables or parametrized machine
learning architectures. The EMD classifier is competitive with
machine learning techniques known to be good multi-prong
classifiers, such as PFNs, EFNs, and EFPs.

est neighbors by EMD. This method should approach
the optimal IRC-safe classifier with a sufficiently large
dataset. The performance of the resulting EMD kNN
classifier is shown in Fig. 3 as a receiver operating char-
acteristic (ROC) curve, with the Area Under the ROC
Curve (AUC) also shown. For comparison, we include
an Energy Flow Network (EFN) and a Particle Flow
Network (PFN) [44] as well as a linear classifier trained on
Energy Flow Polynomials (EFPs) [43]. All classifiers are
trained on a 100k training sample and evaluated on a 20k
test sample, with the neural networks using 20% of the
training sample for validation and a batch size of 125 (see
Ref. [44] for additional details). The kNN approaches
the performance of these state-of-the-art classifiers and

significantly outperforms a ratio τ
(β=1)
2 /τ

(β=1)
1 of N -

subjettiness observables [51, 52] designed to identify two-
prong substructure. It is expected that the performance
of the kNN method would improve with more sophisti-
cated kernel density estimation techniques.

It is worth noting that while searching through a
large reference set of events to find neighbors naively
requires every possible pairwise comparison, in a metric
space the triangle inequality can provide a great deal
of simplification. Specialized data structures known as
metric trees [53–56] have been developed to achieve query
times that are approximately logarithmic in the size of
the dataset. While we use direct searches throughout this
letter, this is not a fundamental limitation and we leave
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FIG. 4. The correlation dimension of top, W , and QCD jets as
a function of the energy scale Q using hadrons (solid), partons
(dashed), and hard decay products (dotted). Generally, QCD
jets are the lowest dimensional and top jets are the highest
dimensional. By comparing partons and hadrons, one sees
that hadronization affects the structure of the space at scales
below about 30 GeV. Similarly, the hard decay structure of
top and W jets governs their dimension at high scales. Below
about 10 GeV, the data become very high dimensional and
sparse, making dimension estimation difficult.

metric tree query optimizations to future work.
Once a space has been equipped with a metric, it is nat-

ural to ask about the structure of the induced manifold.
The most basic aspect of the manifold underlying the
data is its dimension, and several notions of its intrinsic
dimension exist [57]. The correlation dimension [58, 59],
a type of fractal dimension, is suitable for our purposes
and is defined using only pairwise distances:

dim(Q) = Q
∂

∂Q
ln

∑
1≤k<`≤N

Θ(EMD(Ek, E`) < Q), (4)

where N is the total number of events and the summand
indicates whether event k is within EMD Q of event `.

The correlation dimension is an intrinsically scale-
dependent quantity, which is particularly useful as we
anticipate different physical effects to dominate jets at
different scales. Shown in Fig. 4 is the intrinsic dimension
of our top, W , and QCD samples over energy scales Q
ranging from 10 GeV to 1000 GeV obtained from Eq. (4)
with 25k jets. At high energy scales Q, the EMD is
governed by the hard decay kinematics, resulting in a
relatively simple manifold with low intrinsic dimension.
At energy scales Q approaching the fragmentation and
hadronization scales, the structure of the events becomes
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FIG. 5. The embedding of W jets into a two-dimensional
space with t-SNE. The gray contours represent the density of
embedded jets. Examples of W jets are shown throughout
the space. The color of each jet corresponds to its angularity
λ(β=1/2) fractile to quantify the energy sharing of the two
prongs. An annulus emerges with jets in the lower (upper)
region of the manifold having a more energetic lower (upper)
subjet. More complex topologies with the largest angularity
values populate the center of the manifold.

increasingly complex and the dimension correspondingly
increases. It is satisfying that the dimension is relatively
low for a wide range of relevant energies, which is
critical for a variety of metric-based techniques such as
classification and low-dimensional visualization to work
effectively with a realistic amount of data.

Beyond probing its dimension, the entire space of jets
can be visualized using techniques such as t-Distributed
Stochastic Neighbor Embedding (t-SNE) [60–63], which
finds a low-dimensional embedding of the data that
attempts to respect the distances between points. Fig. 5
shows a t-SNE embedding of 5k W jets with pT ∈
[500, 510] GeV into a two-dimensional manifold using
scikit-learn [64]. The narrower pT range focuses the
EMD on the jet substructure and was found to yield
sharper visualizations, with other choices also yielding
sensible results. The W jets populate a circular subspace
roughly corresponding to the energy sharing of the two
prongs. As the W jet originates from a resonant decay,
the two decay quarks (after rotation) are solely described
by their energy sharing, which satisfyingly emerges from
the manifold of W jets. Moreover, the center of the
ring, distant from the annulus, tends to contain the most
complex jet topologies, resulting in a type of automatic
anomaly detection.

Finally, we illustrate the use of EMD for a new kind
of visualization strategy that clusters events to better
understand observable distributions. To describe a given
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√
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FIG. 6. The jet mass distribution for QCD jets, with k = 3
medoids shown above each bin. This visualization highlights
that simple one-prong topologies dominate low jet masses and
complex two-prong topologies exist at high jet masses.

set of events, such as those in a histogram bin, we find
the k events (called medoids) which best describe the
set in that the sum of distances of each event to its
closest medoid is minimized. This procedure works for
any observable and provides an immediate glimpse of
the types of event topologies that correspond to a given
observable value. We use an iterative approximation of
k-medoids from the pyclustering Python package [65].
As an illustration, Fig. 6 shows the jet mass for QCD jets
with k = 3 medoids per bin, providing a snapshot of the
different event topologies at different masses.

In conclusion, we have equipped the space of events
with a metric, thereby allowing a powerful suite of
new tools and techniques to be directly applied to
collider physics. There are many potential applications
of the EMD at colliders beyond those presented here.
Pileup mitigation or detector reconstruction could use
the EMD to benchmark performance and thus benefit
from the quantitative bounds on IRC-safe observable
modifications. Further, machine learning models could
be trained to optimize the EMD, related to recent efforts
in generative modeling [66–69]. By counting neighbors,
one could also perform density estimation in the space of
events [70]. While we have focused on jet substructure,
analogous studies could be carried out at the event level,
which may require working with composite objects such
as jets for realistic computation times. It would be
interesting to explore an EMD strategy for unfolding by
matching detector-level and simulated events. One might
consider alternatives to the EMD, such as symmetry-
projected metrics [22] or p-Wasserstein metrics [71, 72]
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beyond our p = 1 case, though our conclusions should
hold for any physically sensible metric. Further, using
the EMD for model-independent anomaly detection [73–
79] by finding isolated or clustered event topologies could
empower searches for physics beyond the Standard Model
at the LHC.
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metric spaces for similarity search queries,” ACM Trans.
Database Syst. 24, 361–404 (1999).

[57] Francesco Camastra, “Data dimensionality estimation
methods: a survey,” Pattern Recognition 36, 2945 – 2954
(2003).

[58] Peter Grassberger and Itamar Procaccia, “Characteriza-
tion of Strange Attractors,” Phys. Rev. Lett. 50, 346–349
(1983).
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