
MIT–CTP 4924

Pileup Mitigation with Machine Learning (PUMML)

Patrick T. Komiske,a Eric M. Metodiev,a Benjamin Nachman,b Matthew D. Schwartzc

aCenter for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
bPhysics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
cDepartment of Physics, Harvard University, Cambridge, MA 02138, USA

E-mail: pkomiske@mit.edu, metodiev@mit.edu, bpnachman@lbl.gov,

schwartz@physics.harvard.edu

Abstract: Pileup involves the contamination of the energy distribution arising from the

primary collision of interest (leading vertex) by radiation from soft collisions (pileup). We

develop a new technique for removing this contamination using machine learning and con-

volutional neural networks. The network takes as input the energy distribution of charged

leading vertex particles, charged pileup particles, and all neutral particles and outputs the

energy distribution of particles coming from leading vertex alone. The PUMML algorithm

performs remarkably well at eliminating pileup distortion on a wide range of simple and com-

plex jet observables. We test the robustness of the algorithm in a number of ways and discuss

how the network can be trained directly on data.

ar
X

iv
:1

70
7.

08
60

0v
3

 [
he

p-
ph

]
 8

 J
an

 2
01

8

mailto:pkomiske@mit.edu
mailto:metodiev@mit.edu
mailto:bpnachman@lbl.gov
mailto:schwartz@physics.harvard.edu

Contents

1 Introduction 1

2 PUMML algorithm 3

3 Performance 7

4 Robustness 9

5 What is PUMML learning? 14

6 Conclusions 16

1 Introduction

The Large Hadron Collider (LHC) is operated at very high instantaneous luminosities to

achieve the large statistics required to search for exotic Standard Model (SM) or beyond

the SM processes as well as for precision SM measurements. At a hadron collider, protons

are grouped together in bunches; as the luminosity increases for a fixed bunch spacing, the

number of protons within each bunch that collide inelastically increases as well. Most of these

inelastic collisions are soft, with the protons dissolving into mostly low-energy pions that

disperse throughout the detector. A typical collision of this sort at the LHC will contribute

about 0.6 GeV/rad2 of energy [1, 2]. Occasionally, one pair of protons within a bunch crossing

collides head-on, producing hard (high-energy) radiation of interest. At high luminosity, this

hard collision, or leading vertex (LV), is always accompanied by soft proton-proton collisions

called pileup. The data collected thus far by ATLAS and CMS have approximately 20 pileup

collisions per bunch crossing on average (〈NPU〉 ∼ 20); the data in Run 3 are expected to

contain 〈NPU〉 ∼ 80; and the HL-LHC in Runs 4-5 will have 〈NPU〉 ∼ 200. Mitigating the

impact of this extra energy on physical observables is one of the biggest challenges for data

analysis at the LHC.

Using precision measurements, the charged particles coming from the pileup interactions

can mostly be traced to collision points (primary vertices) different from that of the leading

vertex. Indeed, due the to the excellent vertex resolution at ATLAS and CMS [3–5] the

charged particle tracks from pileup can almost completely be identified and removed.1 This

1Some detector systems have an integration time that is (much) longer than the bunch spacing of 25 ns, so

there is also a contribution from pileup collisions happening before or after the collision of interest (out-of-time

pileup). This contribution will not have charged particle tracks and can be at least partially mitigated with

calorimeter timing information. Out-of-time pileup is not considered further in this analysis.

– 1 –

is the simplest pileup removal technique, called charged-hadron subtraction. The challenge

with pileup removal is therefore how to distinguish neutral radiation associated with the hard

collision from neutral pileup radiation.2 Since radiation from pileup is fairly uniform3, it

can be removed on average, for example, using the jet areas technique [9]. The jet areas

technique focuses on correcting the overall energy of collimated sprays of particles known as

jets. Indeed, both the ATLAS and CMS experiments apply jet areas or similar techniques to

calibrate the energy of their jets [1, 2, 10–13]. Unfortunately, for many measurements, such

as those involving jet substructure or the full radiation patterns within the jet, removing the

radiation on average is not enough.

Rather than calibrating only the energy or net 4-momentum of a jet, it is possible to

correct the constituents of the jet. By removing the pileup contamination from each con-

stituent, it should be possible to reconstruct more subtle jet observables. We can coarsely

classify constituent pileup mitigation strategies into several categories: constituent prepro-

cessing, jet/event grooming, subjet corrections, and constituent corrections. Grooming refers

to algorithms that remove objects and corrections describe scale factors applied to individual

objects. Both ATLAS and CMS perform preprocessing to all of their constituents before jet

clustering. For ATLAS, pileup-dependent noise thresholds in topoclustering [14] suppresses

low energy calorimeter deposits that are characteristic of pileup. In CMS, charged-hadron

subtraction removes all of the pileup particle-flow candidates [15]. Jet grooming techniques

are not necessarily designed to exclusively mitigate pileup but since they remove constituents

or subjets in a jet (or event) that are soft and/or at wide angles to the jet axis, pileup

particles are preferentially removed [6, 16–21]. Explicitly tagging and removing pileup sub-

jets often performs comparably to algorithms without explicit pileup subjet removal [6]. A

popular event-level grooming algorithm called SoftKiller [21] removes radiation below some

cutoff on transverse momentum, pcut
T chosen on an event-by-event basis so that half of a set

of pileup-only patches are radiation free.

While grooming algorithms remove constituents and subjets, there are also techniques

that try to reconstruct the exact energy distribution from the primary collision. One of

the first such methods introduced was Jet Cleansing [22]. Cleansing works at the subjet

level, clustering and declustering jets to correct each subjet separately based on its local

energy information. Furthermore, Cleansing exploits the fact that the relative size of pileup

fluctuations decreases as 〈NPU〉 → ∞ so that the neutral pileup-energy content of subjets can

be estimated from the charged pileup-energy content. A series of related techniques operate

on the constituents themselves [23–25]. One such technique called PUPPI also uses local

charged track information but works at the particle level rather than subjet level. PUPPI

2Charged-hadron subtraction follows a particle-flow technique that removes calorimeter energy from pileup

tracks. Due to the calorimeter energy resolution, there will be a residual contribution from charged-hadron

pileup. This contribution is ignored but could in principle be added to the neutral pileup contribution.
3This work will not explicitly discuss identification of real high energy jets resulting from pileup collisions.

The ATLAS and CMS pileup jet identification techniques are documented in Ref. [6, 7] and [8], respectively.

– 2 –

computes a scale factor for each particle, using a local estimate inspired by the jets-without-

jets paradigm [26]. In this paper, we will be comparing our method to PUPPI and SoftKiller.

In this paper, we present a new approach to pileup removal based on machine learning.

The basic idea is to view the energy distribution of particles as the intensity of pixels in an

image [27]. Convolutional neural networks applied to jet images [28] have found widespread

applications in both classification [28–32] and generation [33, 34]. Previous jet-images appli-

cations have included boosted W -boson tagging [28–30], boosted top quark identification [31],

and quark/gluon jet discrimination [32]. Most of these previous applications were all classi-

fication tasks: extracting a single binary classifier (quark or gluon, W jet or background jet,

etc.) from a highly-correlated multidimensional input. The application to pileup removal is

a more complicated regression task, as the output (a cleaned-up image) should be of similar

dimensionality to the input. PUMML is among the first applications of modern machine

learning tools to regression problems in high energy physics.

To apply the convolutional neural network paradigm to cleaning an image itself, we

exploit the finer angular resolution of the tracking detectors relative to the calorimeters of

ATLAS and CMS. Building on the use of multichannel inputs in [32], we give as input to our

network three-channel jet images: one channel for the charged LV particles, one channel for

the charged pileup particles, and one channel, at slightly lower resolution, for the total neutral

particles. We then ask the network to reconstruct the unknown image for LV neutral particles.

Thus our inputs are like those of Jet Cleansing but binned into a regular grid (as images)

rather than single numbers for each subjet [22]. Further, the architecture is designed to be

local (as with Cleansing or PUPPI), with the correction of a pixel only using information

in a region around it. The details of our network architecture are described in Section 2.

Section 3 documents its performance in comparison to other state-of-the-art techniques. The

remainder of the paper contains some robustness checks and a discussion in Section 6 of the

challenges and opportunities for this approach.

2 PUMML algorithm

The goal of the PUMML algorithm is to reconstruct the neutral leading vertex radiation from

the charged leading vertex, charged pileup, and total neutral information. Since neutral par-

ticles do not have tracking information available, the challenge is to determine what fraction

of the total neutral energy in each direction came from the leading vertex and what fraction

came from pileup. To assist this discrimination, we take as inputs into our network the en-

ergy distribution of charged particles, separated into leading vertex and pileup contributions,

in addition to the total neutral energy distribution4. A natural way to combine these ob-

servables is using the multichannel images approach introduced in [32] based on color-image

recognition technology.

4Both ATLAS [35] and CMS [36, 37] are proposing precision timing detectors are part of their upgrades

for the HL-LHC; such information could naturally be incorporated into another layer of the network.

– 3 –

We apply this machine learning technique to R = 0.4 anti-kt jets. The jet image inputs

are square grids in pseudorapidity-azimuth (η, φ) space of size 0.9×0.9 centered on the charged

leading vertex transverse momentum (pT)-weighted centroid of the jet. One could combine all

layers to determine the jet axis, but in practice the axis determined from the charged leading

vertex captures dominates because of its superior angular resolution and pileup robustness.

To simulate the detector resolutions of charged and neutral calorimeters, charged images

are discretized into ∆η ×∆φ = 0.025 × 0.025 pixels and neutral images are discretized into

∆η ×∆φ = 0.1× 0.1 pixels5. We use the following three input channels:

red = the transverse momenta of all neutral particles

green = the transverse momenta of charged pileup particles

blue = transverse momenta of charged leading vertex particles

The output of our network is also an image:

output = the transverse momenta of neutral leading vertex particles.

Only charged particles with pT > 500 MeV were included in the green or blue channels.

Charged particles not passing this charged reconstruction cut were treated as if they were

neutral particles. Otherwise, the separation into channels is assumed perfect. No image

normalization or standardization was applied to the jet images, allowing the network to

make use of the overall transverse momentum scale in each pixel. The different resolutions

for charged and neutral particles initially present a challenge, since standard architectures

assume identical resolution for each color channel. To avoid this issue, we perform a direct

upsampling of each neutral pixel to 4× 4 pixels of size ∆η ×∆φ = 0.025× 0.025 and divide

each pixel value by 16 such that the total momentum in the image is unchanged.

In summary, the following processing was applied to produce the pileup images:

1. Center : Center the jet image by translating in (η, φ) so that the total charged leading

vertex pT -weighted centroid pixel is at (η, φ) = (0, 0). This operation corresponds to

rotating and boosting along the beam direction to center the jet.

2. Pixelate: Crop to a 0.9× 0.9 region centered at (η, φ) = (0, 0). Create jet images from

the transverse momenta of all neutral particles, the charged leading vertex particles,

the charged pileup particles, and the neutral leading vertex particles. Pixelizations of

∆η×∆φ = 0.025×0.025 and ∆η×∆φ = 0.1×0.1 are used for the charged and neutral

jet images, respectively.

3. Upsample: Upsample each neutral pixel to sixteen ∆η × ∆φ = 0.025 × 0.025 pixels,

keeping the total transverse momentum in the image unchanged.

5These dimensions are representative of typical tracking and calorimeter resolutions, but would be adapted

to the particular detector in practice. We ignore other detector effects in this algorithm demonstration, as

has also been done also for PUPPI and SoftKiller. In principle, additional complications due to the detector

response can be naturally incorporated into the algorithm during training.

– 4 –

η
φ

b
ea

m

Leading vertex charged

Pileup charged

Total neutral

Leading vertex neutral
Inputs to NN ︸ ︷︷ ︸

10 filters ×2

Figure 1: An illustration of the PUMML framework. The input is a three-channel image:

blue/purple represents charged radiation from the leading vertex, green is charged pileup

radiation, and yellow/orange/red is the total neutral radiation. The resolution of the charged

images is higher than for the neutral one. These images are fed into a convolutional layer with

several filters whose value at each pixel is a function of a patch around that pixel location in

the input images. The output is an image combining the pixels of each filter to one output

pixel.

– 5 –

The convolutional neural net architecture used in this study took as input 36× 36 pixel,

three-channel pileup images. Two convolutional layers, each with 10 filters of size 6× 6 with

2×2 strides, were used after zero-padding the input images and first convolutional layer with

a 2-pixel buffer on all sides. The output of the second layer has size 9× 9× 10, with the 9× 9

part corresponding to the size of the target output and the 10 corresponding to the number of

filters in the second layer. In order to project down to a 9× 9× 1 output, a third convolution

layer with filter size 1 × 1 is used. This last 1 × 1 convolutional layer is a standard scheme

for dimensionality reduction. A rectified linear unit (ReLU) activation function was applied

at each stage. A schematic of the framework and architecture is shown in Fig. 1.

All neural network implementation and training was performed with the python deep

learning libraries Keras [38] and Theano [39]. The dataset consisted of 56k pileup images,

with a 90%/10% train/test split. He-uniform initialization [40] was used to initialize the

model weights. The neural network was trained using the Adam [41] algorithm with a batch

size of 50 over 25 epochs with a learning rate of 0.001. The choice of loss function implicitly

determines a preference for accuracy on harder pixels or softer pixels. To that end, the loss

function used to train PUMML was a modified per-pixel logarithmic squared loss:

` =

〈
log

(
p

(pred)
T + p̄

p
(true)
T + p̄

)2〉
, (2.1)

where p̄ is a hyperparameter that controls the choice between favoring all pT equally (p̄→∞)

or favoring soft pixels (p̄ → 0). After mild optimization, a value of p̄ = 10 GeV was chosen,

though the performance of the model as measured by correlations between reconstructed

and true observables is relatively robust to this choice. PUMML was found to give good

performance even with a standard loss function such as the mean squared error, which favors

all pT equally.

The PUMML architecture is local in that the rescaling of a neutral pixel is a function

solely of the information in a patch in (η, φ)-space around that pixel. The size of this patch can

be controlled by tuning the filter sizes and number of layers in the architecture. Further, due

to weight-sharing in convolutional layers, the same function is applied for all pixels. Building

this locality and translation invariance into the architecture ensures that the algorithm learns

a universal pileup mitigation technique, while carrying the benefit of drastically reducing the

number of model parameters. Indeed, the PUMML architecture used in this study has only

4,711 parameters, which is small on the scale of deep learning architectures, but serves to

highlight the effectiveness of using modern machine learning techniques (such as convolutional

layers) in high energy physics without necessarily using large or deep networks.

While we considered jets and jet images in this study, the PUMML architecture using

convolutional nets readily generalizes to event-level applications. The locality of the algorithm

implies that the trained model can be applied to any desired region of the event using only

the surrounding pixels. To train the model on the event level, either the existing PUMML

architecture could be generalized to larger inputs and outputs or the event could be sliced

– 6 –

into smaller images and the model trained as in the present study. The parameters of the

PUMML architecture are the convolutional filter sizes, the number of filters per layer, and the

number of convolutional layers, which may be optimized for a specific application. Here, we

have presented an architecture optimized for simplicity and performance for jet-level pileup

subtraction. PUMML is designed to be applicable at both jet- and event-level.

3 Performance

To test the PUMML algorithm, we consider qq̄ light-quark-initiated jets coming from the

decay of a scalar with mass mφ = 500 GeV. Events were generated using Pythia 8.183 [42]

with the default tune for pp collisions at
√
s = 13 TeV. Pileup was generated by overlaying

soft QCD processes onto each event. Final state particles except muons and neutrinos were

kept. The events were clustered with FastJet 3.1.3 [43] using the anti-kt algorithm [44] with

a jet radius of R = 0.4. A parton-level pT cut of 95 GeV was applied and up to two leading

jets with pT > 100 GeV and η ∈ [−2.5, 2.5] were selected from each event. All particles were

taken to be massless.

Samples were generated with the number of pileup vertices ranging from 0 to 180. Since

the model must be trained to fix its parameters, the learned model depends on the pileup

distribution used for training. For our pileup simulations, we trained on a Poisson distribution

of NPUs with mean 〈NPU〉 = 140. For robustness studies, we also tried training with NPU=

140 for each event or NPU= 20 for each event. The average jet image inputs for this sample

are shown in Fig. 2. For comparison, we show the performance of two powerful and widely

used constituent-based pileup mitigation methods: PUPPI [23] and SoftKiller [21]. In both

cases, default parameter values were used: R0 = 0.3, Rmin = 0.02, wcut = 0.1, pcut
T (NPU) =

0.1+0.007×NPU (PUPPI), grid size = 0.4 (SoftKiller). Variations in the PUPPI parameters

did not yield a large difference in performance. Both PUPPI and SoftKiller were implemented

at the particle level and then discretized for comparison with PUMML. We show the action

of the various pileup mitigation methods on a random selection of events in Fig. 3. On

these examples, PUMML more effectively removes moderately soft energy deposits that are

retained by PUPPI and SoftKiller.

To evaluate the performance of different pileup mitigation techniques, we compute several

observables and compare the true values to the corrected values of the observables. To

facilitate a comparison with PUMML, which outputs corrected neutral calorimeter cells rather

than lists of particles, a detector discretization is applied to the true and reconstructed events.

Our comparisons focus on the following six jet observables:

• Jet Mass: Invariant mass of the leading jet.

• Dijet Mass: Invariant mass of the two leading jets.

• Jet Transverse Momentum: The total transverse momentum of the jet.

– 7 –

Pseudorapidity

Az
im

ut
ha

l A
ng

le

Neutral Total pT

Pseudorapidity

Az
im

ut
ha

l A
ng

le

Charged Pileup pT

Pseudorapidity

Az
im

ut
ha

l A
ng

le

Charged Leading Vertex pT

Pseudorapidity

Az
im

ut
ha

l A
ng

le

Neutral Leading Vertex pT

Figure 2: The average leading-jet images for a 500 GeV scalar decaying to light-quark jets

with 〈NPU〉 = 140 pileup, separated by all neutral particles (top left), charged pileup particles

(top right), charged leading vertex particles (bottom left), and neutral leading vertex particles

(bottom right). Different pixelizations are used for charged and neutral images to reflect the

differences in calorimeter resolution. The charged and total neutral images comprise the

three-channel input to the neural network, which is trained to predict the neutral leading

vertex image.

• Neutral Image Activity, N95 [45]: The number of neutral calorimeter cells which account

for 95% of the total neutral transverse momentum.

• Energy Correlation Functions, ECF
(β)
N [46]: Specifically, we consider the logarithm of

the two- and three-point ECFs with β = 4.

Fig. 4 illustrates the distributions of several of these jet observables after applying the

different pileup subtraction methods. While these plots are standard, they do not give a per-

event indication of performance. A more useful comparison is to show the distributions of the

per-event percent error in reconstructing the true values of the observables, which are shown

– 8 –

Leading Vertex with Pileup PUMML PUPPI SoftKiller

Figure 3: Depictions of three randomly chosen leading jets. Blue/purple represents charged

radiation from the leading vertex, green is charged pileup radiation, and yellow/orange/red is

the neutral radiation. Shown from left to right are the true neutral leading vertex particles,

the event with pileup and charged leading vertex information, followed by the neutral leading

vertex particles predicted by PUMML, PUPPI, and SoftKiller. From examining these events,

it appears that PUMML has learned an effective pileup mitigation strategy.

in Fig. 5. To numerically explore the event-by-event effectiveness, we can look at the Pearson

linear correlation coefficient between the true and corrected values or the interquartile range

(IQR) of the percent errors. Table 1 summarizes the event-by-event correlation coefficients

of the distributions shown in Fig. 4. Table 2 summarizes the IQRs of the distributions shown

in Fig. 5. PUMML outperforms the other pileup mitigation techniques on both of these

metrics, with improvements for jet substructure observables such as the jet mass and the

energy correlation functions.

4 Robustness

It is important to verify that PUMML learns a pileup mitigation function which is not overly

sensitive to the NPU distribution of its training sample. Robustness to the NPU on which it is

trained would indicate that PUMML is learning a universal subtraction strategy. To evaluate

this robustness, PUMML was trained on 50k events with either NPU = 20 or NPU = 140

– 9 –

0 20 40 60 80 100
Jet Mass (GeV)

Cr
os

s-
se

ct
io

n
(n

or
m

al
ize

d)
True
w. Pileup
SoftKiller
PUPPI
PUMML

0 200 400 600 800 1000
Dijet Mass (GeV)

Cr
os

s-
se

ct
io

n
(n

or
m

al
ize

d)

True
w. Pileup
SoftKiller
PUPPI
PUMML

0 100 200 300 400 500 600
Jet pT (GeV)

Cr
os

s-
se

ct
io

n
(n

or
m

al
ize

d)

True
w. Pileup
SoftKiller
PUPPI
PUMML

0 10 20 30 40 50
Neutral N95

Cr
os

s-
se

ct
io

n
(n

or
m

al
ize

d)

True
w. Pileup
SoftKiller
PUPPI
PUMML

14 12 10 8 6 4 2 0
ln ECF(= 4)

N = 2

Cr
os

s-
se

ct
io

n
(n

or
m

al
ize

d)

True
w. Pileup
SoftKiller
PUPPI
PUMML

35 30 25 20 15 10 5
ln ECF(= 4)

N = 3

Cr
os

s-
se

ct
io

n
(n

or
m

al
ize

d)

True
w. Pileup
SoftKiller
PUPPI
PUMML

Figure 4: Distributions of leading jet mass (top left), dijet mass (top right), leading jet pT
(middle left), neutral N95 (middle right), ln ECF

(β=4)
N=2 (bottom left), and ln ECF

(β=4)
N=3 (bottom

right) for the considered pileup subtraction methods with Poissonian 〈NPU〉 = 140 pileup.

While all of the pileup mitigation methods do well for observables such as the dijet mass and

jet pT , PUMML more closely matches the true distributions of more sensitive substructure

observables like mass, neutral N95, and the energy correlation functions.

– 10 –

100 50 0 50 100
Jet Mass Percent Error, Centered

Cr
os

s-
se

ct
io

n
(n

or
m

al
ize

d)
SoftKiller
PUPPI
PUMML

15 10 5 0 5 10 15
Dijet Mass Percent Error, Centered

Cr
os

s-
se

ct
io

n
(n

or
m

al
ize

d)

SoftKiller
PUPPI
PUMML

20 15 10 5 0 5 10 15 20
Jet pT Percent Error, Centered

Cr
os

s-
se

ct
io

n
(n

or
m

al
ize

d)

SoftKiller
PUPPI
PUMML

10 5 0 5 10
Neutral N95 Difference, Centered

Cr
os

s-
se

ct
io

n
(n

or
m

al
ize

d)

SoftKiller
PUPPI
PUMML

40 20 0 20 40
ln ECF(= 4)

N = 2 Percent Error, Centered

Cr
os

s-
se

ct
io

n
(n

or
m

al
ize

d)

SoftKiller
PUPPI
PUMML

40 20 0 20 40
ln ECF(= 4)

N = 3 Percent Error, Centered

Cr
os

s-
se

ct
io

n
(n

or
m

al
ize

d)

SoftKiller
PUPPI
PUMML

Figure 5: Distributions of the percent error between reconstructed and true values for

leading jet mass (top left), dijet mass (top right), leading jet pT (middle left), neutral N95

(middle right), ln ECF
(β=4)
N=2 (bottom left), and ln ECF

(β=4)
N=3 (bottom right) for the considered

pileup subtraction methods with Poissonian 〈NPU〉 = 140 pileup. For the discrete neutral

N95 observable, only the difference is shown. All distributions are centered to have median

at 0. The improved reconstruction performance of PUMML is highlighted by its taller and

narrower peaks.

– 11 –

Correlation (%) w. Pileup PUMML PUPPI SoftKiller

Jet mass 65.5 97.4 94.0 91.3

Dijet mass 85.5 99.5 95.8 99.1

Jet pT 94.4 99.7 98.0 99.4

Neutral N95 36.2 75.3 70.4 67.7

ln ECF
(β=4)
N=2 60.4 90.5 83.3 68.8

ln ECF
(β=4)
N=3 41.6 77.2 69.1 45.7

Table 1: Correlation coefficients between the true and corrected values of different jet

observables on an event-by-event level. The first column lists the correlation without any

pileup mitigation applied to the event. Larger correlation coefficients are better.

IQR (%) PUMML PUPPI SoftKiller

Jet mass 13.0 28.7 30.8

Dijet mass 2.02 2.95 2.97

Jet pT 2.26 3.40 3.39

ln ECF
(β=4)
N=2 5.63 8.82 11.9

ln ECF
(β=4)
N=3 8.48 10.7 16.7

Table 2: The interquartile ranges (IQR) of the distributions in Fig. 5. Note that PUMML

performs better than either PUPPI or SoftKiller. Lower IQR indicates better performance.

and then tested on samples with different NPUs. Fig. 6 shows the jet mass correlation coef-

ficients as a function of the test sample NPU. PUMML learns a strategy that is surprisingly

performant outside of the NPU range on which it was trained. Further, we see that by this

measure of performance, PUMML consistently outperforms both PUPPI and SoftKiller.

A related robustness test is to probe how the performance of PUMML depends on the

pT spectrum of the training sample. To explore this, we generated two large training samples

(50k events): one with a scalar mass of 200 GeV and one with a scalar mass of 2 TeV; we did

not impose any parton-level pT cuts on these samples. After training these two networks, we

tested them on a set of samples generated from scalars with intermediate masses, from 300

GeV to 900 GeV. As can be seen in Fig. 7, the performance of PUMML is very robust to

the pT distribution of the jets in the training sample: the networks trained on the 200 GeV

resonance and the 2 TeV resonance have identical performance. The figure also shows that

the performance of PUMML is less sensitive to of the pT of the testing sample than either

PUPPI or Soft-Killer. This robustness test speaks to the PUMML algorithm’s ability to learn

universal aspects of pileup mitigation.

A number of modifications of PUMML were also tried. Locally connected layers were

tried instead of convolutional layers and were found to perform worse due to a large increase

in the number of parameters of the model, while losing the translation invariance that makes

– 12 –

0 25 50 75 100 125 150 175
NPU

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Je
t M

as
s C

or
re

la
tio

n
Co

ef
fic

ie
nt

PUMML trained on NPU=20
PUMML trained on NPU=140
PUPPI
SoftKiller

Figure 6: Correlation coefficients between reconstructed and true jet masses plotted as

a function of NPU for the different pileup mitigation schemes. PUMML was trained on

50k events with either NPU= 20 or NPU= 140 indicated by dashed vertical lines. The

performance of PUMML with Poissonian 〈NPU〉 = 140 is similar to the NPU= 140 curve.

PUMML is surprisingly performant well outside the NPU range on which it was trained and

consistently outperforms PUPPI and SoftKiller. Note that PUMML trained on the lower

NPU sample better reconstructs the jet mass in the low pileup regime.

PUMML powerful. We tried training without various combinations of the input channels;

the model was found to perform moderately worse without either of the charged channels but

suffered severe degradation without the total neutral channel. We tried using simpler models

with only one layer or fewer filters per layer. Remarkably, even with only a single layer and a

single 4×4 filter (a model that has just 49 parameters), PUMML performed only moderately

worse than the version presented in this study, which was allowed to be more complicated in

order to achieve even better performance.

– 13 –

300 400 500 600 700 800 900

mφ (GeV)

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Je
t

M
a
ss

 C
o
rr

e
la

ti
o
n
 C

o
e
ff

ic
ie

n
t

PUMML, mφ = 200 GeV

PUMML, mφ = 2000 GeV

PUPPI

SoftKiller

Figure 7: Correlation coefficients between reconstructed and true jet masses plotted as a

function of the mass of the scalar resonance with NPU=140. A spread in scalar resonances

is generated in order to produce a range in jet transverse momenta. In order to assess the

impact of the pT distribution used for training, one version of PUMML was trained with a

scalar mass of 200 GeV (black) and one was trained with a mass of 2 TeV (gray). The two

PUMML curves closely match one another.

5 What is PUMML learning?

While it is generally very difficult to determine what a network is learning, one possible probe

is to examine the weights of the filter layers in the convolutional network. For our full network,

these weights are complicated and the subtractor that the network learns is difficult to probe

analytically. Instead, we trained a simplified PUMML network with a single 12 × 12 pixel

filter, which spans 3×3 neutral pixels, with no bias term. The different channels of this filter

are shown in Fig. 8. The neutral filter clearly selects the relevant neutral pixel for subtraction,

while the charged pileup filter is approximately uniform (with the value dependent on the

specific choice of loss function and activation function), and the charged leading vertex filter

does not significantly contribute.

The filter values motivate the following parameterization of what PUMML is learning:

pN,LV
T = 1.0 pN,total

T − β pC,PU
T + 0.0 pC,LV

T , (5.1)

for some O(1) constant β, where pN,LV
T , pN,total

T , pC,PU
T , and pC,LV

T are the neutral-pixel-level

transverse momenta of the neutral leading-vertex particles, all neutral particles, charged

pileup particles, and charged leading-vertex particles, respectively. The values 1.0 and 0.0 in

– 14 –

Neutral Total Filter

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Charged Pileup Filter

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
Charged Leading Vertex Filter

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 8: Filter weights for a simple PUMML network with a single 12 × 12 filter and a

ReLU activation function trained with 〈NPU〉 = 140. The network has selected the relevant

neutral pixel, turned off the charged leading vertex contribution, and is using the charged

pileup information uniformly.

Eq. (5.1) are stable (to the 0.05 level) under variations in the loss and activation functions.

This is reassuring as the learned subtractor is thereby robust in the NPU → 0 limit despite

begin trained on 〈NPU〉 = 140.

Eq. (5.1) is remarkably similar to the physically-motivated formula used in Jet Cleans-

ing [22]. Cleansing is built on the observation that since pileup is the incoherent sum of many

separate scattering events, its variance is smaller than the variance of the radiation from the

leading-vertex. Thus, it is better to estimate pN,PU
T from pC,PU

T than to estimate pN,LV
T from

pC,LV
T . The simplest form of Cleansing (Linear Cleansing) gives the formula:

pN,LV
T = pN,tot

T −
(

1

γ0
− 1

)
pC,PU
T , (5.2)

where γ0 is the average ratio of charged pT to total pT in a subjet. Thus this simple one

12×12 filter PUMML network is learning a subtractor of precisely the same parametric form

as Linear Cleansing!

The value of γ0 in Linear Cleansing and the value of β that is learned in Eq. (5.1) depend

on how soft radiation is handled. For example, if no reconstruction threshold is applied,

γ0 ≈ 2/3 (since 2/3 of pions are charged). In addition, the value of β depends on the loss

function used. For example, if the loss function is minimized when the means of the true and

predicted neutral transverse momenta are equal:

` =
∣∣∣〈p(true)

T 〉 − 〈p(pred)
T 〉

∣∣∣ =
∣∣∣〈pN,LV

T 〉 − 〈pN,total
T 〉+ β〈 pC,PU

T 〉
∣∣∣ , (5.3)

then we find that the optimal β is:

β =
〈pN,PU
T 〉
〈pC,PU
T 〉

. (5.4)

Training the 12 × 12 PUMML filter without a ReLU or bias term, using the loss function

of Eq. (5.3) with the average taken pixel-wise over the batch, we find β = 0.59 with no

– 15 –

charged reconstruction cut and β = 1.18 with the cut. These values are consistent with those

predicted by Eq. (5.4) of 0.62 and 1.26, respectively.

On the other hand, if we take a mean squared error loss function:

` =

〈(
p

(true)
T − p(pred)

T

)2
〉
, (5.5)

then the minimum occurs at:

β =
〈pN,PU
T pC,PU

T 〉
〈pC,PU
T pC,PU

T 〉
. (5.6)

This still depends only on the pileup properties, as with Linear Cleansing, but also depends

on correlations between neutral and charged radiation. For example, training the 12 × 12

PUMML filter without a ReLU or bias term using a mean squared error loss function, we

find β = 0.56 with no charged reconstruction cut and β = 0.97 with the cut. These numbers

are in general agreement (within 10 − 20%) with a direct evaluation of the right-hand side

of Eq. (5.6). In the limit that neutral and charged pileup radiation are constant, Eq. (5.6)

reduces to Eq. (5.4).

Whether the loss function of Eq. (5.4) or Eq. (5.6) (or something else entirely) is better

is not simple to establish. The inclusion of the ReLU activation function further complicates

the analysis since the model is equally penalized for all non-positive predictions. We find

with the single 12× 12 filter, using the loss function of Eq. (2.1) and including a ReLU and

bias term, PUMML achieves a jet mass correlation coefficient of 90.4%. This is competitive

with the values listed in Table. 1, as we might expect since Linear Cleansing has comparable

performance to PUPPI and SoftKiller. The full network improves on Linear Cleansing by

exploiting additional correlations that are hard to disentangle by looking at the filters.

6 Conclusions

In this paper, we have introduced the first application of machine learning to the critically

important problem of pileup mitigation at hadron colliders. We have phrased the problem

of pileup mitigation in the language of a machine learning regression problem. The method

we introduced, PUMML, takes as input the transverse momentum distribution of charged

leading-vertex, charged pileup, and all neutral particles, and outputs the corrected leading

vertex neutral energy distribution. We demonstrated that PUMML works at least as well

as, and often better than, the competing algorithms PUPPI and SoftKiller in their default

implementations. It will be exciting to see these algorithms compared with a full detector

simulation, where it will be possible to test the sensitivity to important experimental effects

such as resolutions and inefficiencies.

There are several extensions and additional applications of the PUMML framework be-

yond the scope of this study. As mentioned in Section 2, PUMML can very naturally be

extended from jet images to entire events. Applying this event-level PUMML to the problem

of missing transverse energy would be a natural next step. While the filter sizes can be the

– 16 –

same for the event and jet images, the network training will likely require modification. Fur-

thermore, the inhomogeneity of the detector response with |η| will require attention. Another

potentially useful modification to PUMML would be to train to predict the neutral pileup

pT rather than the neutral leading vertex pT in order to increase out-of-sample robustness of

the learned pileup mitigation algorithm. Additionally, using larger-R jets may be of interest,

thereby necessitating a resizing of the local patch or other PUMML parameters, all of which

is easily achieved.

An important consideration when using machine learning for particle physics applications

is how the method can be used with data and whether or not the systematic uncertainties are

under control. Unlike a purely physically-motivated algorithm, such as PUPPI or SoftKiller,

machine learning runs the risk of being a “black-box” which can be difficult to understand.

Nevertheless, machine learning is powerful, scaleable, and capable of complementing physical

insight to solve complicated or otherwise intractable problems.

To prevent the model from learning simulation artifacts, it is preferable to train on

actual data rather than simulation. In many machine learning applications in collider physics,

obtaining truth-level training samples in data is a substantial challenge. To overcome this

challenge in classification tasks, [47] introduces an approach to train from impure samples

using class proportion information. For PUMML and pileup mitigation more broadly, a more

direct method to train on data is possible. To simulate pileup, we overlay soft QCD events on

top of a hard scattering process, both generated with Pythia. Experimentally, there are large

samples of minimum bias and zero-bias (i.e. randomly triggered) data. There are also samples

of relatively pileup-free events from low luminosity runs. Thus we can construct high-pileup

samples using purely data. This kind of data overlay approach, which has already been used

by experimental groups in other contexts [48, 49], could be perfect for training PUMML with

data. Therefore, an implementation of ML-based pileup mitigation in an actual experimental

setting could avoid mis-modeling artifacts during training, thus adding more robustness and

power to this new tool.

Acknowledgments

The authors would like to thank Philip Harris, Francesco Rubbo, Ariel Schwartzman and

Nhan Tran for stimulating conversations, in particular for suggesting some of the extensions

mentioned in the conclusions. We would also like to thank Jesse Thaler for helpful discussions.

PTK and EMM would like to thank the MIT Physics Department for its support. Computa-

tions in this paper were run on the Odyssey cluster supported by the FAS Division of Science,

Research Computing Group at Harvard University. This work was supported by the Office

of Science of the U.S. Department of Energy (DOE) under contracts DE-AC02-05CH11231

and DE-SC0013607, the DOE Office of Nuclear Physics under contract DE-SC0011090, and

the DOE Office of High Energy Physics under contract DE-SC0012567. Cloud computing

resources were provided through a Microsoft Azure for Research award. Additional support

was provided by the Harvard Data Science Initiative.

– 17 –

References

[1] CMS Collaboration, V. Khachatryan et. al., Jet energy scale and resolution in the CMS

experiment in pp collisions at 8 TeV, JINST 12 (2017), no. 02 P02014 [1607.03663].

[2] ATLAS Collaboration, M. Aaboud et. al., Jet energy scale measurements and their systematic

uncertainties in proton-proton collisions at
√
s = 13 TeV with the ATLAS detector, 1703.09665.

[3] CMS Collaboration, S. Chatrchyan et. al., Description and performance of track and

primary-vertex reconstruction with the CMS tracker, JINST 9 (2014), no. 10 P10009

[1405.6569].

[4] ATLAS Collaboration, Characterization of Interaction-Point Beam Parameters Using the pp

Event-Vertex Distribution Reconstructed in the ATLAS Detector at the LHC, .

[5] ATLAS Collaboration, Performance of primary vertex reconstruction in proton-proton

collisions at
√
s =7 TeV in the ATLAS experiment, .

[6] ATLAS Collaboration, G. Aad et. al., Performance of pile-up mitigation techniques for jets in

pp collisions at
√
s = 8 TeV using the ATLAS detector, Eur. Phys. J. C76 (2016), no. 11 581

[1510.03823].

[7] ATLAS Collaboration, M. Aaboud et. al., Identification and rejection of pile-up jets at high

pseudorapidity with the ATLAS detector, Eur. Phys. J. C77 (2017), no. 9 580 [1705.02211].

[8] CMS Collaboration, C. Collaboration, Pileup Jet Identification, .

[9] M. Cacciari and G. P. Salam, Pileup subtraction using jet areas, Phys. Lett. B659 (2008)

119–126 [0707.1378].

[10] CMS Collaboration, S. Chatrchyan et. al., Determination of Jet Energy Calibration and

Transverse Momentum Resolution in CMS, JINST 6 (2011) P11002 [1107.4277].

[11] ATLAS Collaboration, G. Aad et. al., Jet energy measurement with the ATLAS detector in

proton-proton collisions at
√
s = 7 TeV, Eur. Phys. J. C73 (2013), no. 3 2304 [1112.6426].

[12] ATLAS Collaboration, Monte carlo calibration and combination of in-situ measurements of jet

energy scale, jet energy resolution and jet mass in atlas, ATLAS-CONF-2015-037, 2015.

[13] CMS Collaboration, Jet energy scale and resolution performances with 13tev data, CMS

Detector Performance Summary CMS-DP-2016-020, CERN (2016).

[14] ATLAS Collaboration, G. Aad et. al., Topological cell clustering in the ATLAS calorimeters

and its performance in LHC Run 1, 1603.02934.

[15] CMS Collaboration, A. M. Sirunyan et. al., Particle-flow reconstruction and global event

description with the CMS detector, 1706.04965.

[16] J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam, Jet substructure as a new Higgs

search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [0802.2470].

[17] D. Krohn, J. Thaler and L.-T. Wang, Jet Trimming, JHEP 02 (2010) 084 [0912.1342].

[18] S. D. Ellis, C. K. Vermilion and J. R. Walsh, Techniques for improved heavy particle searches

with jet substructure, Physical Review D 80 (2009), no. 5 051501.

[19] S. D. Ellis, C. K. Vermilion and J. R. Walsh, Recombination algorithms and jet substructure:

pruning as a tool for heavy particle searches, Physical Review D 81 (2010), no. 9 094023.

– 18 –

http://arXiv.org/abs/1607.03663
http://arXiv.org/abs/1703.09665
http://arXiv.org/abs/1405.6569
http://arXiv.org/abs/1510.03823
http://arXiv.org/abs/1705.02211
http://arXiv.org/abs/0707.1378
http://arXiv.org/abs/1107.4277
http://arXiv.org/abs/1112.6426
http://arXiv.org/abs/1603.02934
http://arXiv.org/abs/1706.04965
http://arXiv.org/abs/0802.2470
http://arXiv.org/abs/0912.1342

[20] A. J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP 05 (2014) 146

[1402.2657].

[21] M. Cacciari, G. P. Salam and G. Soyez, SoftKiller, a particle-level pileup removal method, Eur.

Phys. J. C75 (2015), no. 2 59 [1407.0408].

[22] D. Krohn, M. D. Schwartz, M. Low and L.-T. Wang, Jet Cleansing: Pileup Removal at High

Luminosity, Phys. Rev. D90 (2014), no. 6 065020 [1309.4777].

[23] D. Bertolini, P. Harris, M. Low and N. Tran, Pileup Per Particle Identification, JHEP 10

(2014) 059 [1407.6013].

[24] P. Berta, M. Spousta, D. W. Miller and R. Leitner, Particle-level pileup subtraction for jets and

jet shapes, JHEP 06 (2014) 092 [1403.3108].

[25] ATLAS Collaboration, Constituent-level pileup mitigation performance using 2015 data,

ATLAS-CONF-2017-065 (2017).

[26] D. Bertolini, T. Chan and J. Thaler, Jet Observables Without Jet Algorithms, JHEP 04 (2014)

013 [1310.7584].

[27] J. Cogan, M. Kagan, E. Strauss and A. Schwarztman, Jet-Images: Computer Vision Inspired

Techniques for Jet Tagging, JHEP 02 (2015) 118 [1407.5675].

[28] L. de Oliveira, M. Kagan, L. Mackey, B. Nachman and A. Schwartzman, Jet-images — deep

learning edition, JHEP 07 (2016) 069 [1511.05190].

[29] P. Baldi, K. Bauer, C. Eng, P. Sadowski and D. Whiteson, Jet Substructure Classification in

High-Energy Physics with Deep Neural Networks, Phys. Rev. D93 (2016), no. 9 094034

[1603.09349].

[30] J. Barnard, E. N. Dawe, M. J. Dolan and N. Rajcic, Parton Shower Uncertainties in Jet

Substructure Analyses with Deep Neural Networks, Phys. Rev. D95 (2017), no. 1 014018

[1609.00607].

[31] G. Kasieczka, T. Plehn, M. Russell and T. Schell, Deep-learning Top Taggers or The End of

QCD?, JHEP 05 (2017) 006 [1701.08784].

[32] P. T. Komiske, E. M. Metodiev and M. D. Schwartz, Deep learning in color: towards automated

quark/gluon jet discrimination, JHEP 01 (2017) 110 [1612.01551].

[33] L. de Oliveira, M. Paganini and B. Nachman, Learning Particle Physics by Example:

Location-Aware Generative Adversarial Networks for Physics Synthesis, 1701.05927.

[34] M. Paganini, L. de Oliveira and B. Nachman, CaloGAN: Simulating 3D High Energy Particle

Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks,

1705.02355.

[35] ATLAS Collaboration, ATLAS Phase-II Upgrade Scoping Document, CERN-LHCC-2015-020

(2015).

[36] CMS Collaboration, CMS Phase II Upgrade Scope Document, CERN-LHCC-2015-019 (2015).

[37] CMS Collaboration, Technical Proposal for the Phase-II Upgrade of the CMS Detector,

CERN-LHCC-2015-010. (2015).

[38] F. Chollet, Keras, 2015 https://github.com/fchollet/keras.

– 19 –

http://arXiv.org/abs/1402.2657
http://arXiv.org/abs/1407.0408
http://arXiv.org/abs/1309.4777
http://arXiv.org/abs/1407.6013
http://arXiv.org/abs/1403.3108
http://arXiv.org/abs/1310.7584
http://arXiv.org/abs/1407.5675
http://arXiv.org/abs/1511.05190
http://arXiv.org/abs/1603.09349
http://arXiv.org/abs/1609.00607
http://arXiv.org/abs/1701.08784
http://arXiv.org/abs/1612.01551
http://arXiv.org/abs/1701.05927
http://arXiv.org/abs/1705.02355
https://github.com/fchollet/keras

[39] J. e. a. Bergstra, Theano: A cpu and gpu math compiler in python, in 9th Python in Science

Conference, pp. 1–7, 2010.

[40] K. He, X. Zhang, S. Ren and J. Sun, Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification, in 2015 IEEE International Conference on Computer

Vision (ICCV), pp. 1026–1034, 2015.

[41] D. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint

arXiv:1412.6980 (2014).

[42] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel,

C. O. Rasmussen and P. Z. Skands, An Introduction to PYTHIA 8.2, Comput. Phys. Commun.

191 (2015) 159–177 [1410.3012].

[43] M. Cacciari, G. P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C72 (2012) 1896

[1111.6097].

[44] M. Cacciari, G. P. Salam and G. Soyez, The Anti-kt jet clustering algorithm, JHEP 04 (2008)

063 [0802.1189].

[45] J. Pumplin, How to tell quark jets from gluon jets, Phys. Rev. D44 (1991) 2025–2032.

[46] A. J. Larkoski, G. P. Salam and J. Thaler, Energy Correlation Functions for Jet Substructure,

JHEP 06 (2013) 108 [1305.0007].

[47] L. M. Dery, B. Nachman, F. Rubbo and A. Schwartzman, Weakly Supervised Classification in

High Energy Physics, JHEP 05 (2017) 145 [1702.00414].

[48] Z. Marshall, A. Collaboration et. al., Simulation of pile-up in the atlas experiment, in Journal

of Physics: Conference Series, vol. 513, p. 022024, IOP Publishing, 2014.

[49] ATLAS Collaboration, A. Haas, Atlas simulation using real data: Embedding and overlay,

tech. rep., 2017.

– 20 –

http://arXiv.org/abs/1410.3012
http://arXiv.org/abs/1111.6097
http://arXiv.org/abs/0802.1189
http://arXiv.org/abs/1305.0007
http://arXiv.org/abs/1702.00414

	1 Introduction
	2 PUMML algorithm
	3 Performance
	4 Robustness
	5 What is PUMML learning?
	6 Conclusions

