Energy Flow and Jet Substructure

Patrick T. Komiske III

Center for Theoretical Physics Massachusetts Institute of Technology

BOOST 2018

Paris, France – July 18, 2018

Based on work with Eric M. Metodiev and Jesse Thaler

 1712.07124
 EnergyFlow

Overture Act I

- IRC Safe Jet Observables
- Energy Flow Polynomials
- Linear Classification Performance

Intermission

Act II

- Intrinsic Jet Symmetries
- Energy Flow Networks
- Opening the Box

Epilogue

Act

- IRC Safe Jet Observables
- Energy Flow Polynomials
- Linear Classification Performance

Intermission

- Intrinsic Jet Symmetries
- Energy Flow Networks
- Opening the Box

Jet Representations \longleftrightarrow Analysis Tools

Two key choices when tagging jets

How to represent the jet

- Single expert variable
- A few expert variables
- Many expert variables
- Jet images
- List of particles
- Clustering tree
- N-subjettiness basis
- Energy flow polynomials
- Set of particles

How to analyze that representation

- Threshold cut
- Multidimensional likelihood
- Boosted decision tree (BDT), shallow neural network (NN)
- Convolutional NN (CNN)
- Recurrent/Recursive NN (RNN)
- Fancy RNN
- Deep neural network (DNN)
- Linear classification
- Energy flow network

See Ben Nachman's intro talk for more

Jet Representations \longleftrightarrow Analysis Tools

Two key choices when tagging jets

How to represent the jet

- Single expert variable
- A few expert variables
- Many expert variables
- Jet images
- List of particles
- Clustering tree
- N-subjettiness basis •
- Energy flow polynomials Act I
- Set of particles

How to analyze that representation

- Threshold cut
- Multidimensional likelihood •
- Boosted decision tree (BDT), shallow neural network (NN)
- Convolutional NN (CNN)
- Recurrent/Recursive NN (RNN) •
- Fancy RNN
- Deep neural network (DNN) Linear classification
- Energy flow network Act II

See Ben Nachman's intro talk for more

Energy Flow and Jet Substructure

Overture

Act l

- IRC Safe Jet Observables
- Energy Flow Polynomials
- Linear Classification Performance

Intermission

Act II

- Intrinsic Jet Symmetries
- Energy Flow Networks
- Opening the Box

Expanding an Arbitrary IRC-safe Observable

Arbitrary IRC-safe observable: $S(p_1^{\mu}, ..., p_M^{\mu})$

- Energy expansion*: Approximate S with polynomials of z_{i_i}
 - IR safety: S is unchanged under addition of soft particle
 - C safety: S is unchanged under collinear splitting of a particle
 - Relabeling symmetry: Particle index is arbitrary

Energy correlator parametrized by angular function *f*

 $\sum_{i_1=1}^{M} \dots \sum_{i_N=1}^{M} z_{i_1} \dots z_{i_N} f(\hat{p}_{i_1}, \dots, \hat{p}_{i_N})$

More about IRC safety in backup

[F.Tkachov, <u>hep-ph/9601308</u>]

Energy correlators linearly span IRC-safe observables

- Angular expansion*: Approximate f with polynomials in θ_{ij}
- Simplify: Identify unique analytic structure that emerge

Linear spanning basis in terms of "EFPs" has been found!

$$S \simeq \sum_{g \in G} s_G \text{EFP}_G, \qquad \text{EFP}_G \equiv \sum_{i_1=1}^M \dots \sum_{i_N=1}^M z_{i_1} \dots z_{i_N} \prod_{(k,\ell) \in G} \theta_{i_k i_\ell}$$

**Generically these expansions exist by the Stone-Weierstrass theorem

Patrick T. Komiske III (MIT)

Energy Flow and Jet Substructure

Program

Overture

Act l

- IRC Safe Jet Observables
- Energy Flow Polynomials
- Linear Classification Performance

Intermission

Act II

- Intrinsic Jet Symmetries
- Energy Flow Networks
- Opening the Box

Energy Flow Polynomials (EFPs)

EFPs are most naturally truncated by the degree *d*, the order of the angular expansion (other truncations possible)

Online Encyclopedia of Integer Sequences (OEIS)

- <u>A050535</u> # of multigraphs with *d* edges # of EFPs of degree *d*
- <u>A076864</u> # of connected multigraphs with d edges # of prime EFPs of degree d

Exactly 1000 EFPs up to degree d=7!

There exist many linear redundancies of several types in the set of EFPs

Energy Flow and Jet Substructure

EFPs are most naturally truncated by the degree *d*, the order of the angular expansion (other truncations possible)

Online Encyclopedia of Integer Sequences (OEIS)

- <u>A050535</u> # of multigraphs with d edges # of EFPs of degree d
- <u>A076864</u> # of connected multigraphs with d edges # of prime EFPs of degree d

Exactly 1000 EFPs up to degree d=7!

There exist many linear redundancies of several types in the set of EFPs

Energy Flow and Jet Substructure

EFPs are most naturally truncated by the degree *d*, the order of the angular expansion (other truncations possible)

Online Encyclopedia of Integer Sequences (OEIS)

- <u>A050535</u> # of multigraphs with *d* edges # of EFPs of degree *d*
- <u>A076864</u> # of connected multigraphs with d edges # of prime EFPs of degree d

Exactly 1000 EFPs up to degree d=7!

There exist many linear redundancies of several types in the set of EFPs

EFPs are most naturally truncated by the degree *d*, the order of the angular expansion (other truncations possible)

Online Encyclopedia of Integer Sequences (OEIS)

- <u>A050535</u> # of multigraphs with *d* edges # of EFPs of degree *d*
- <u>A076864</u> # of connected multigraphs with d edges # of prime EFPs of degree d

Exactly 1000 EFPs up to degree d=7!

There exist many linear redundancies of several types in the set of EFPs

Program

Overture

Act l

- IRC Safe Jet Observables
- Energy Flow Polynomials
- Linear Classification Performance

Intermission

Act II

- Intrinsic Jet Symmetries
- Energy Flow Networks
- Opening the Box

Jet Tagging Performance – Quark vs. Gluon Jets

W vs. QCD and top vs. QCD jet tagging in backup

N-subjettiness:

[J. Thaler, K. Van Tilburg, 1011.2268, 1108.2701]

N-subjettiness basis: [K. Datta, A. Larkoski, <u>1704.08249</u>]

QG CNNs:

[PTK, E. Metodiev, M. Schwartz, 1612.01551]

ML/NN review:

[A. Larkoski, I. Moult, B. Nachman, 1709.04464]

(Linear classification with EFPs) \sim (MML) for efficiency > 0.25!

Overture Act I

- IRC Safe Jet Observables
- Energy Flow Polynomials
- Linear Classification Performance

Intermission

Act II

- Intrinsic Jet Symmetries
- Energy Flow Networks
- Opening the Box

EnergyFlow Python Package

EnergyFlow package is available for python 2 and python 3

Automatically applies variable elimination algorithm to speed up computation

Simple to select combinations of EFPs to compute on various kinds of inputs (pp, e+e-, Euclidean four-momenta, detector coordinates, etc.)

Come to the software demo on Friday to hear more about EnergyFlow and try it for yourself!

https://pkomiske.github.io/EnergyFlow/

Overture Act I

- IRC Safe Jet Observables
- Energy Flow Polynomials
- Linear Classification Performance

Intermission

Act II

- Intrinsic Jet Symmetries
- Energy Flow Networks
- Opening the Box

What are Jets?

(See Eric Metodiev's talk tomorrow)

Jets are variable length, unordered collections of particles

$$J(\{p_1^{\mu}, \dots, p_M^{\mu}\}) = J(\{p_{\pi(1)}^{\mu}, \dots, p_{\pi(M)}^{\mu}\}), \qquad \forall \, \pi \in S_M$$

M is multiplicity of the jet

Permutation group on M elements

Particle properties:

- Four-momenta p_i^{μ}
- Other quantum numbers (e.g. particle id)
- Experimental information (e.g. vertex info)

Variable jet length requires at least one of:

- Preprocessing into another representation (jet images, EFPs, N-subs, etc.)
- Truncation to an (arbitrary) fixed size
- Recurrent NN structure induces a dependence on the particle order!

Particle relabeling symmetry requires a new architecture

Overture Act I

- IRC Safe Jet Observables
- Energy Flow Polynomials
- Linear Classification Performance

Intermission

Act II

- Intrinsic Jet Symmetries
- Energy Flow Networks
- Opening the Box

Energy Flow Network (EFN)

Desire a manifest relabeling symmetry of model

Embed each particle into a learnable latent space

Combine latent observables with manifestly permutation invariant function (the sum)

Key ingredient: Kolmogorov-Arnold representation theorem

 $\operatorname{EFN}(\{p_1^{\mu}, \dots, p_M^{\mu}\}) = F\left(\sum_{i=1}^M z_i \Phi(\hat{p}_i)\right)$

Manifestly IRC-safe latent space

$$\operatorname{PFN}(\{p_1^{\mu}, \dots, p_M^{\mu}\}) = F\left(\sum_{i=1}^{M} \mathbf{\Phi}(p_i^{\mu})\right)$$

Fully general latent space

Patrick T. Komiske III (MIT)

Energy Flow and Jet Substructure

[PTK, E. Metodiev, J. Thaler, to appear soon]

Energy Flow Network (EFN)

Desire a manifest relabeling symmetry of model

Embed each particle into a learnable latent space

Combine latent observables with manifestly permutation invariant function (the sum)

[PTK, E. Metodiev,]. Thaler, to appear soon]

Key ingredient: Kolmogorov-Arnold representation theorem

$$\operatorname{EFN}(\{p_1^{\mu}, \dots, p_M^{\mu}\}) = F\left(\sum_{i=1}^{M} z_i \mathbf{\Phi}(\hat{p}_i)\right)$$

Manifestly IRC-safe latent space

$$\operatorname{PFN}(\{p_1^{\mu}, \dots, p_M^{\mu}\}) = F\left(\sum_{i=1}^{M} \mathbf{\Phi}(p_i^{\mu})\right)$$

Fully general latent space

Patrick T. Komiske III (MIT)

Energy Flow and Jet Substructure

Familiar Jet Substructure Observables as EFNs

[Observable		$\mathbf{Map} \ \Phi(q)$	Function F
PRELIMINARY	Mass	m	p^{μ}	$F(x^{\mu}) = \sqrt{x^{\mu}x_{\mu}}$
	Multiplicity	M	1	F(x) = x
	Track Mass	m_{track}	$p^{\mu}\mathbb{I}_{\text{track}}$	$F(x^{\mu}) = \sqrt{x^{\mu}x_{\mu}}$
	Track Multiplicity	M_{track}	$\mathbb{I}_{\mathrm{track}}$	F(x) = x
	Momentum Dispersion	p_T^D	(p_T, p_T^2)	$F(x,y) = \sqrt{y/x^2}$
	Jet Charge	\mathcal{Q}_{κ}	$(p_T, Q p_T^\kappa)$	$F(x,y) = y/x^{\kappa}$
	Eventropy	$z \ln z$	$(p_T, p_T \ln p_T)$	$F(x,y) = y/x - \ln x$

$$\operatorname{EFN}\left(\left\{p_{1}^{\mu}, \dots, p_{M}^{\mu}\right\}\right) = F\left(\sum_{i=1}^{M} z_{i} \boldsymbol{\Phi}(\hat{p}_{i})\right)$$

 $\operatorname{PFN}(\{p_1^{\mu}, \dots, p_M^{\mu}\}) = F\left(\sum_{i=1}^{M} \Phi(p_i^{\mu})\right)$

Many observables are easily interpreted in EFN language

Some observables not as easily handled (e.g. N-subjettiness) Iterated EFN structure could address this

EFPs are also included, albeit opaquely via Energy Flow Moments (EFMs)

$$\text{EFM}^{\mu_1 \dots \mu_{\nu}} = \sum_{i=1}^{n} z_i \, \hat{p}_i^{\mu_1} \dots \, \hat{p}_i^{\mu_{\nu}}$$

М

[PTK, E. Metodiev, J. Thaler, to appear soon]

Classification Performance

Modern ML models are similar, but PFN-ID is the best

EFPs slightly better than EFN (training neural networks can be challenging)

EFN Latent Dimension Sweep – Quark vs. Gluon Jets

Latent dimension eventually saturates

Comparison models around EFN performance

All models substantially above single best observable (multiplicity)

EFN Latent Dimension Sweep – Top vs. QCD Jets

Latent dimension eventually saturates

EFPs slightly better than EFN (training neural networks can be challenging)

AUC Comparison on Common Top vs. QCD Samples

Approach	AUC	Contact	Comments	
LoLa	0.979	GK / Slmon Leiss	Preliminary number, based on LoLa	
LBN	0.979	Marcel Rieger	Preliminary number	
CNN	0.981	David Shih	Model from Pulling Out All the Tops with Computer Vision and Deep Learning (1803.00107)	Table from this Google Doc
P-CNN (1D CNN)	0.980	Huilin Qu, Loukas Gouskos	Preliminary, use kinematic info only (https://indico.phy sics.lbl.gov/indico/ event/546/contribu tions/1270/)	

AUC Comparison on Common Top vs. QCD Samples

Approach	AUC		Contact	Comments	
LoLa	0.979		GK / Slmon Leiss	Preliminary number, based on LoLa	
LBN	0.979		Marcel Rieger	Preliminary number	
CNN	0.981		David Shih	Model from Pulling Out All the Tops with Computer Vision and Deep Learning (1803.00107)	Table from this Google Doc
P-CNN (1D CNN)	0.980		Huilin Qu, Loukas Gouskos	Preliminary, use kinematic info only (https://indico.phy sics.lbl.gov/indico/ event/546/contribu tions/1270/)	
EFN	0.976				
EFN-rr	0.979				
PFN	0.980	PRELIMINARY			
EFPs	0.980				

Patrick T. Komiske III (MIT)

0.982

PFN-rr

Energy Flow and Jet Substructure

Overture Act I

- IRC Safe Jet Observables
- Energy Flow Polynomials
- Linear Classification Performance

Intermission

Act II

- Intrinsic Jet Symmetries
- Energy Flow Networks
- Opening the Box

Visualizing the Filters

Given trained model, examine values of latent observables, $\Phi(\hat{p}) = (\ell_1(\hat{p}), \dots \ell_n(\hat{p}))$

EFN observables are purely geometric functions of (y, ϕ) and can be shown as twodimensional images (similar to jet images)

[L. de Oliviera, M. Kagan, L. Mackey, B. Nachman, A. Schwartzman, 1511.05190]

Energy Flow and Jet Substructure

Visualizing the Filters – Quark vs. Gluon Jets

Translated Rapidity

Translated Azimuthal Angle

Visualizing the Filters – Quark vs. Gluon Jets

Visualizing the Filters – Quark vs. Gluon Jets

Visualizing the Filters – Quark vs. Gluon Jets

Visualizing the Filters – Quark vs. Gluon Jets

Visualizing the Filters – Quark vs. Gluon Jets

Visualizing the Filters – Quark vs. Gluon Jets

PRELIMINARY

Colored region is 10% around median

Visualizing the Filters – Quark vs. Gluon Jets

PRELIMINARY

Colored region is 10% around median

Visualizing the Filters – Quark vs. Gluon Jets

PRELIMINARY

Colored region is 10% around median

Singularity structure of QCD!

Measuring the Filters – Quark vs. Gluon Jets

Power-law dependence between filter size and distance from center

Indicative that the model has learned a radial, logarithmic transform of a jet image (suggestive of Lund-plane jet images) (Stay tuned for F. Dreyer's talk!)

Lund jet images: [F. Dreyer, G. Salam, G. Soyez, <u>1807.04758</u>]

Visualizing the Filters – Top vs. QCD Jets

Visualizing the Filters – Top vs. QCD Jets

PRELIMINARY

Top vs. QCD 256 filters

Rotated and reflected approximate rotational symmetry broken

No more central singularity structure!

Measuring the Filters – Top vs. QCD Jets

Not as much a power-law dependence

General trend that more central filters are smaller

Don't expect or see any central singularity structure

Overture Act I

- IRC Safe Jet Observables
- Energy Flow Polynomials
- Linear Classification Performance

Intermission

Act II

- Intrinsic Jet Symmetries
- Energy Flow Networks
- Opening the Box

Epilogue

Conclusions

Linear tagging with EFPs performs comparably to modern approaches Training is vastly simplified, convex global minimum, no hyperparameters, fully IRC safe <u>EnergyFlow</u> package allows for simple and fast evaluation

EFNs have the appropriate symmetries for variable length sets of particles Quark vs. gluon and top vs. QCD tagging performance is great Architecture just works out of the box

EFNs admit fascinating, interpretable visuals of what the model is doing Model has learned a Lund-plane-like particle embedding Singularity structure of QCD is organically discovered Effect of preprocessing is clearly seen in the top case

Everything has the same* performance

Recent work along these lines [Moore, Nordstrom, Varma, Fairbairn, <u>1807.04769</u>]

Models should be evaluated on more than just performance

Connection to underlying physics, and eventually data, is most important

EFPs and EFNs each have unique properties that make them attractive

See Eric Metodiev's talk for a use of both models with weak supervision

Conclusions

Linear tagging with EFPs performs comparably to modern approaches Training is vastly simplified, convex global minimum, no hyperparameters, fully IRC safe <u>EnergyFlow</u> package allows for simple and fast evaluation

EFNs have the appropriate symmetries for variable length sets of particles Quark vs. gluon and top vs. QCD tagging performance is great Architecture just works out of the box

EFNs admit fascinating, interpretable visuals of what the model is doing Model has learned a Lund-plane-like particle embedding Singularity structure of QCD is organically discovered Effect of preprocessing is clearly seen in the top case

Everything has the same* performance

Recent work along these lines [Moore, Nordstrom, Varma, Fairbairn, <u>1807.04769</u>]

Models should be evaluated on more than just performance

Connection to underlying physics, and eventually data, is most important

EFPs and EFNs each have unique properties that make them attractive

See Eric Metodiev's talk for a use of both models with weak supervision

Ultimately, ML efficiently implements mathematical/statistical ideas that are grounded in physics

What is IRC Safety?

Infrared (IR) safety – observable is unchanged under addition of a soft particle:

$$S(\{p_1^{\mu}, \dots, p_M^{\mu}\}) = \lim_{\epsilon \to 0} S(\{p_1^{\mu}, \dots, p_M^{\mu}, \epsilon p_{M+1}^{\mu}\}), \qquad \forall p_{M+1}^{\mu}$$

Collinear (C) safety – observable is unchanged under collinear splitting of a particle:

$$S(\{p_1^{\mu}, \dots, p_M^{\mu}\}) = \lim_{\epsilon \to 0} S(\{p_1^{\mu}, \dots, (1-\lambda)p_M^{\mu}, \lambda p_M^{\mu}\}), \qquad \forall \lambda \in [0,1]$$

A necessary and sufficient condition for soft/collinear divergences of a QFT to cancel at each order in perturbation theory (KLN theorem)

Divergences in QCD splitting function:

$$dP_{i \to ig} \simeq \frac{2\alpha_s}{\pi} C_i \frac{d\theta}{\theta} \frac{dz}{z} \qquad C_q = C_F = 4/3$$

$$C_g = C_A = 3$$

IRC-safe observables probe hard structure while being insensitive to low energy modifications

Multigraph/EFP Correspondence

Familiar Jet Substructure Observables as EFPs

Scaled Jet Mass:

$$\frac{m_J^2}{p_{TJ}^2} = \sum_{i_1=1}^M \sum_{i_2=1}^M z_{i_1} z_{i_2} (\cosh \Delta y_{i_1 i_2} - \cos \Delta \phi_{i_1 i_2}) = \frac{1}{2} \qquad + \cdots$$

Jet Angularities:

Energy Correlation Functions(ECFs):
$$e_N^{(\beta)} = \sum_{i_1=1}^M \sum_{i_2=1}^M \cdots \sum_{i_N=1}^M z_{i_1} z_{i_2} \cdots z_{i_N} \prod_{k < l \in \{1, \dots, N\}} \theta_{i_k i_l}^{\beta}$$

[A. Larkoski, G. Salam, and J. Thaler, 1305.0007]

and many more...

Jet Tagging Performance – 2-prong and 3-prong tagging

ROC curves for W vs. QCD and top vs. QCD jet tagging

(Linear classification with EFPs) \sim (MML) for efficiency > 0.5!

Additional EFP Tagging Plots – Quark vs. Gluon Jets

Energy Flow and Jet Substructure

Additional EFP Tagging Plots – Quark vs. Gluon Jets

Energy Flow and Jet Substructure

EFP Computation Timing with Variable Elimination

Linear Classification Performance – Top vs. QCD Jets

Energy Flow and Jet Substructure