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Jet Representations            Analysis Tools

How to represent the jet

• Single expert variable

• A few expert variables

• Many expert variables

• Jet images

• List of particles

• Clustering tree

• N-subjettiness basis

• Energy flow polynomials

• Set of particles

How to analyze that representation

• Threshold cut

• Multidimensional likelihood

• Boosted decision tree (BDT), 
shallow neural network (NN)

• Convolutional NN (CNN)

• Recurrent/Recursive NN (RNN)

• Fancy RNN

• Deep neural network (DNN)

• Linear classification

• Energy flow network
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Two key choices when tagging jets

Jet Tagging Overture

See Ben Nachman’s intro talk for more
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Two key choices when tagging jets

Jet Tagging Overture
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See Ben Nachman’s intro talk for more
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Expanding an Arbitrary IRC-safe Observable

Arbitrary IRC-safe observable: !(#$%, … , #(% )
• Energy expansion*:  Approximate ! with polynomials of *+,

• IR safety: ! is unchanged under addition of soft particle

• C safety: ! is unchanged under collinear splitting of a particle

• Relabeling symmetry: Particle index is arbitrary

-
+./$

(
… -
+0/$

(
*+. …*+01(#̂+. , … , #̂+0)

• Energy correlators linearly span IRC-safe observables

• Angular expansion*:  Approximate 1 with polynomials in 3+4
• Simplify: Identify unique analytic structure that emerge

• Linear spanning basis in terms of “EFPs” has been found!
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IRC Safe Jet Observables

! ≃ -
6∈8

98EFP8 , EFP8 ≡ -
+./$

(
… -
+0/$

(
*+. …*+0 >

?,ℓ ∈8
3+A+ℓ

Energy correlator parametrized 
by angular function f

More about IRC
safety in backup

**Generically these expansions exist by the Stone-Weierstrass theorem

[F. Tkachov, hep-ph/9601308]

https://arxiv.org/abs/hep-ph/9601308
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Energy Flow Polynomials (EFPs)
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Energy Flow Polynomials

EFP$ = &
'()*

+
&
',)*

+
⋯ &

'.)*

+
/'(/',⋯/'. 0

1,3 ∈$
5'6'7

Correlator
Sum over all N-tuples of 
particle in the event

Energies
Product of the N
energy fractions

Angles
One 5'6'7 for each 

edge in 8, 9 ∈ :

In equations:

In words: of and

In pictures: /';< 5'6'78 9

(e.g. “fly swatter”) = &
'()*

+
&
',)*

+
&
'=)*

+
&
'>)*

+
/'(/',/'=/'> 5'(',5','=5'='>5','>?1 2

3

4
(any index labelling works)

DEDF: /' = H;
∑6 H6

, 5'J = ?KLMK;M
HLH;

N
,

Hadronic: /' = KW;
∑6 KW6

, 5'J = ΔY'J? + Δ['J?
N
,

Energy Fraction Pairwise Angular Distance/'
/J
5'J

multigraph

[PTK, E. Metodiev, J. Thaler, 1712.07124]

See backup for explicit EFP/multigraph mapping

https://arxiv.org/abs/1712.07124


Organizing the Basis
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Energy Flow Polynomials

EFPs are most naturally truncated by the 
degree d, the order of the angular 
expansion (other truncations possible)

Online Encyclopedia of Integer Sequences (OEIS)

# of multigraphs with d edges
# of EFPs of degree d

# of connected multigraphs with d edges
# of prime EFPs of degree d

A050535

A076864

Exactly 1000 EFPs up to degree d=7!

There exist many linear redundancies of several 
types in the set of EFPs

https://oeis.org/A050535
https://oeis.org/A076864
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Energy Flow Polynomials

EFPs are most naturally truncated by the 
degree d, the order of the angular 
expansion (other truncations possible)

Online Encyclopedia of Integer Sequences (OEIS)

# of multigraphs with d edges
# of EFPs of degree d

# of connected multigraphs with d edges
# of prime EFPs of degree d

A050535

A076864

Exactly 1000 EFPs up to degree d=7!

There exist many linear redundancies of several 
types in the set of EFPs

Jet mass

More detail in backup

https://oeis.org/A050535
https://oeis.org/A076864


Angularities 
(combination)

Organizing the Basis
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Energy Flow Polynomials

EFPs are most naturally truncated by the 
degree d, the order of the angular 
expansion (other truncations possible)

Online Encyclopedia of Integer Sequences (OEIS)

# of multigraphs with d edges
# of EFPs of degree d

# of connected multigraphs with d edges
# of prime EFPs of degree d

A050535

A076864

Exactly 1000 EFPs up to degree d=7!

There exist many linear redundancies of several 
types in the set of EFPs

Energy correlation 
functions

More detail in backup

https://oeis.org/A050535
https://oeis.org/A076864


Program

Patrick T. Komiske III (MIT) Energy Flow and Jet Substructure 14

Overture

Act I

- IRC Safe Jet Observables

- Energy Flow Polynomials

- Linear Classification Performance

Intermission

Act II

- Intrinsic Jet Symmetries

- Energy Flow Networks

- Opening the Box

Epilogue



Jet Tagging Performance – Quark vs. Gluon Jets
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Linear Classification Performance

N-subjettiness: 
[J. Thaler, K. Van Tilburg, 1011.2268, 1108.2701]

N-subjettiness basis:
[K. Datta,  A. Larkoski, 1704.08249]

QG CNNs:
[PTK, E. Metodiev, M. Schwartz, 1612.01551]

ML/NN review:
[A. Larkoski, I. Moult, B. Nachman, 1709.04464]

(Linear classification with EFPs) ~ (MML) for efficiency > 0.25! 

ROC curves for quark vs. gluon jet tagging

be
tte

r W vs. QCD and top vs. QCD jet 
tagging in backup

https://arxiv.org/abs/1011.2268
https://arxiv.org/abs/1108.2701
https://arxiv.org/abs/1704.08249
https://arxiv.org/abs/1612.01551
https://arxiv.org/abs/1709.04464
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EnergyFlow Python Package 

EnergyFlow package is available for python 2 and python 3

Automatically applies variable elimination algorithm to speed up computation

Simple to select combinations of EFPs to compute on various kinds of inputs (pp, 
e+e-, Euclidean four-momenta, detector coordinates, etc.)

Patrick T. Komiske III (MIT) Energy Flow and Jet Substructure 17

Intermission

https://pkomiske.github.io/EnergyFlow/

Come to the software demo on Friday 
to hear more about EnergyFlow and 
try it for yourself!

https://pkomiske.github.io/EnergyFlow/
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Jets are variable length, unordered collections of particles

! {#$
%
, … , #(

%
} = ! {#+ $

%
, … , #+ (

%
} , ∀ - ∈ /(

Particle properties:

• Four-momenta #0
%

• Other quantum numbers (e.g. particle id)

• Experimental information (e.g. vertex info)

Variable jet length requires at least one of:

• Preprocessing into another representation (jet images, EFPs, N-subs, etc.)

• Truncation to an (arbitrary) fixed size

• Recurrent NN structure – induces a dependence on the particle order!

Particle relabeling symmetry requires a new architecture

What are Jets?

Patrick T. Komiske III (MIT) Energy Flow and Jet Substructure 19

Intrinsic Jet Symmetries

(See Eric Metodiev’s talk tomorrow)

1 is multiplicity of the jet

Permutation group on 1 elements
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Energy Flow Network (EFN)
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Energy Flow Networks

Desire a manifest relabeling symmetry of model

Embed each particle into a learnable latent space

Combine latent observables with manifestly 
permutation invariant function (the sum) 

EFN $%&, … , $)& = + ,
-.%

)
/-0($̂-)

PFN $%&, … , $)& = + ,
-.%

)
0($-&)

Manifestly IRC-safe latent space

Fully general latent space

1703.06114

PRELIMINARY

[PTK, E. Metodiev, J. Thaler, to appear soon]

Key ingredient: Kolmogorov-Arnold representation theorem

https://arxiv.org/abs/1703.06114
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Familiar Jet Substructure Observables as EFNs
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Energy Flow Networks

EFN $%&, … , $)& = + ,
-.%

)
/-0($̂-)

Many observables are easily interpreted in EFN language

Some observables not as easily handled (e.g. N-subjettiness)

EFPs are also included, albeit opaquely via 
Energy Flow Moments (EFMs)

Iterated EFN structure could address this

EFM&5…&6 =,
-.%

)
/- $̂-&5 … $̂-&6

PRELIMINARY

[PTK, E. Metodiev, J. Thaler, to appear soon]

PFN $%&, … , $)& = + ,
-.%

)
0($-&)
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Energy Flow Networks

Modern ML models are similar, but PFN-ID 
is the best

PRELIMINARY PRELIMINARY

EFPs slightly better than EFN (training neural 
networks can be challenging)

be
tte

r

Samples based on and provided by:
[A. Butter, G. Kasieczka, T. Plehn, M. Russell, 1707.08966]

https://arxiv.org/abs/1707.08966


Latent dimension eventually saturates

Comparison models around EFN performance

All models substantially above single best observable (multiplicity)

EFN Latent Dimension Sweep – Quark vs. Gluon Jets

Patrick T. Komiske III (MIT) Energy Flow and Jet Substructure 25

Energy Flow Networks

21 22 23 24 25 26 27 28 EFP DNN CNN Mult. Mass

Number of Latent Observables

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

A
U
C

Quark vs. Gluon Jets

Pythia 8.230,
√
s = 14 TeV

R = 0.4, pT ∈ [500, 550] GeV

PFN-ID

PFN

EFN

PRELIMINARY



23 24 25 26 27 28 d ≤ 7 d ≤ 6 d ≤ 5 d ≤ 4 d ≤ 3

Number of Latent Observables

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

A
U
C

Top vs. QCD Jets

Pythia 8 w/ Delphes,
√
s = 14 TeV

AK8, pT ∈ [550, 650] GeV, |η| < 2

Based on samples from 1707.08966

Linear EFPs

β = 0.5, χ ≤ 3

PFN

EFN

Centered only

Centered, rotated, reflected

EFN Latent Dimension Sweep –Top vs. QCD Jets

Patrick T. Komiske III (MIT) Energy Flow and Jet Substructure 26

Energy Flow Networks

Latent dimension eventually saturates

EFPs slightly better than EFN (training neural networks can be challenging)

PRELIMINARY



AUC Comparison on Common Top vs. QCD Samples

Patrick T. Komiske III (MIT) Energy Flow and Jet Substructure 27

Energy Flow Networks

Table from this Google Doc

https://docs.google.com/document/d/1Hcuc6LBxZNX16zjEGeq16DAzspkDC4nDTyjMp1bWHRo/edit


EFN 0.976

EFN-rr 0.979

PFN 0.980

EFPs 0.980

PFN-rr 0.982

AUC Comparison on Common Top vs. QCD Samples

Patrick T. Komiske III (MIT) Energy Flow and Jet Substructure 28

Energy Flow Networks

Table from this Google Doc

PRELIMINARY

https://docs.google.com/document/d/1Hcuc6LBxZNX16zjEGeq16DAzspkDC4nDTyjMp1bWHRo/edit
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Visualizing the Filters
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Opening the Box
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Given trained model, examine values of latent observables,  ! #̂ = (ℓ' #̂ , … ℓ*(#̂))

EFN observables are purely geometric functions of +, , and can be shown as two-
dimensional images (similar to jet images)

EFN structure encompasses many 
representations, e.g. jet images

What will the EFN learn?
EFPs (via EFMs)?
Jet images?
Something uninterpretable?
Something interpretable but completely new?

Example: Jet images as EFN filters

Jet images:
[J. Cogan, M. Kagan, E. Strauss, A. Schwartzman, 1407.5675]
[L. de Oliviera, M. Kagan, L. Mackey, B. Nachman, A. Schwartzman, 1511.05190]

https://arxiv.org/abs/1407.5675
https://arxiv.org/abs/1511.05190


Visualizing the Filters – Quark vs. Gluon Jets
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Opening the Box

EFN256 randomly selected 
filters, sorted by active filter 
size

Generally see “peanuts” and 
“lobes”

Local nature of activated 
pixel regions is fascinating!

PRELIMINARY



Visualizing the Filters – Quark vs. Gluon Jets
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Opening the Box

Quark vs. Gluon 
2 filters

Colored region is 10% 
around median

PRELIMINARY



Visualizing the Filters – Quark vs. Gluon Jets
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Opening the Box

Quark vs. Gluon
4 filters

Colored region is 10% 
around median

PRELIMINARY



Visualizing the Filters – Quark vs. Gluon Jets
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Opening the Box

Quark vs. Gluon 
8 filters

Colored region is 10% 
around median

PRELIMINARY



Visualizing the Filters – Quark vs. Gluon Jets
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Opening the Box

Quark vs. Gluon 
16 filters

Colored region is 10% 
around median

PRELIMINARY



Visualizing the Filters – Quark vs. Gluon Jets
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Opening the Box

Quark vs. Gluon
32 filters

Colored region is 10% 
around median

PRELIMINARY



Visualizing the Filters – Quark vs. Gluon Jets
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Opening the Box

Quark vs. Gluon 
64 filters

Colored region is 10% 
around median

PRELIMINARY



Visualizing the Filters – Quark vs. Gluon Jets
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Opening the Box

Quark vs. Gluon
128 filters

Colored region is 10% 
around median

PRELIMINARY



Visualizing the Filters – Quark vs. Gluon Jets
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Opening the Box

Quark vs. Gluon 
256 filters

Colored region is 10% 
around median

Singularity structure of 
QCD!

PRELIMINARY



Measuring the Filters – Quark vs. Gluon Jets
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Opening the Box

Power-law dependence 
between filter size and 
distance from center

Indicative that the model has 
learned a radial, logarithmic 
transform of a jet image 
(suggestive of Lund-plane jet 
images) (Stay tuned for F. Dreyer’s talk!)

PRELIMINARY

Lund jet images: 
[F. Dreyer, G. Salam, G. Soyez, 1807.04758]

https://arxiv.org/abs/1807.04758


Visualizing the Filters – Top vs. QCD Jets
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Opening the Box

Top vs. QCD
256 filters

No more central 
singularity structure!

PRELIMINARY



Visualizing the Filters – Top vs. QCD Jets
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Opening the Box

Top vs. QCD
256 filters

No more central 
singularity structure!

Rotated and reflected -
approximate rotational 
symmetry broken

PRELIMINARY



Measuring the Filters – Top vs. QCD Jets
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Opening the Box

General trend that more 
central filters are smaller

Not as much a power-law 
dependence

Don’t expect or see any 
central singularity structure 

PRELIMINARY
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Conclusions

Linear tagging with EFPs performs comparably to modern approaches
Training is vastly simplified, convex global minimum, no hyperparameters, fully IRC safe

EnergyFlow package allows for simple and fast evaluation 

EFNs have the appropriate symmetries for variable length sets of particles
Quark vs. gluon and top vs. QCD tagging performance is great

Architecture just works out of the box

EFNs admit fascinating, interpretable visuals of what the model is doing
Model has learned a Lund-plane-like particle embedding

Singularity structure of QCD is organically discovered

Effect of preprocessing is clearly seen in the top case

Everything has the same* performance

Models should be evaluated on more than just performance
Connection to underlying physics, and eventually data, is most important

EFPs and EFNs each have unique properties that make them attractive

Patrick T. Komiske III (MIT) Energy Flow and Jet Substructure 45

Recent work along these lines
[Moore, Nordstrom, Varma, Fairbairn, 1807.04769]

Epilogue

See Eric Metodiev’s talk for a use of 
both models with weak supervision

https://pkomiske.github.io/EnergyFlow/
https://arxiv.org/abs/1807.04769
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Recent work along these lines
[Moore, Nordstrom, Varma, Fairbairn, 1807.04769]

Epilogue

Ultimately, ML efficiently implements mathematical/statistical ideas that 

are grounded in physics

See Eric Metodiev’s talk for a use of 
both models with weak supervision

https://pkomiske.github.io/EnergyFlow/
https://arxiv.org/abs/1807.04769
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What is IRC Safety?
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Infrared (IR) safety – observable is unchanged under addition of a soft particle:

! "#
$
, … , "'

$
= lim

,→.
! "#

$
, … , (1 − 5)"'

$
, 5"'

$
, ∀5 ∈ [0,1]

Collinear (C) safety – observable is unchanged under collinear splitting of a particle:

A necessary and sufficient condition for soft/collinear divergences of a QFT
to cancel at each order in perturbation theory (KLN theorem)

Divergences in QCD splitting function:

;<=→=> ≃
2AB

C
D=
;E

E

;F

F

DG = DH = 4/3

D> = DL = 3

IRC-safe observables probe hard structure while being insensitive to low energy 
modifications



Multigraph/EFP Correspondence
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Familiar Jet Substructure Observables as EFPs
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[A. Larkoski, G. Salam, and J. Thaler, 1305.0007]

@N(B) = @O(B) =@#(B) =

Scaled Jet Mass:

Jet Angularities:

Energy Correlation Functions(ECFs):

[C. Berger, T. Kucs, and G. Sterman, hep-ph/0303051]

[S. Ellis, et al., 10010014]

[A. Larkoski, J. Thaler, and W. Waalewijn, 1408.3122]

and many more…

=(P) = −32 + 58

=(O) = −34

https://arxiv.org/abs/1305.0007
https://arxiv.org/abs/hep-ph/0303051
https://arxiv.org/abs/1001.0014
https://arxiv.org/abs/1408.3122


Jet Tagging Performance – 2-prong and 3-prong tagging
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Linear Classification Performance

ROC curves for W vs. QCD and top vs. QCD jet tagging

(Linear classification with EFPs) ~ (MML) for efficiency > 0.5! 
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Additional EFP Tagging Plots – Quark vs. Gluon Jets
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EFP Computation Timing with Variable Elimination
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