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Multiparticle Correlators

Sums of products of energies (transverse momenta) and angles

Definition of energy factor and pairwise angular distance
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Graphs represent correlators
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Multiparticle Correlators

Ubiquitous observables at the LHC
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Definition of energy factor and pairwise angular distance
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central, narrow jet approximation




Multiparticle Correlators

Pri

2 9 M,
05, =2n;nj, =2

Definition of energy factor and pairwise angular distance
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central, narrow jet approximation

T > PT;
Ubiquitous observables at the LHC
Mass Energy Correlation Functions (ECFs)
| M M
2
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i=1 j=1 i1=1  in=1 J<k

[Larkoski, Salam, Thaler, 1305.0007; Larkoski, Moult, Neill, 1409.6298]

Used for multi-prong tagging,
typically in ratios , D2, Cy, C;3, etc.

DO | —

Generalized ECFs also useful
(angular part not monomial)
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Multiparticle Correlators

Ubiquitous observables at the LHC

Definition of energy factor and pairwise angular distance

PTi V Duj
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central, narrow jet approximation
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Mass
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Energy Correlation Functions (ECFs)
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=1 J =1 7 1= ’LN 1 ] < k
[Larkoski, Salam, Thaler, 1305.0007; Larkoski, Moult, Neill, 1409.6298]
Used for multi-prong tagging,
1 typically in ratios , D2, Cy, C3, etc.
2

Generalized ECFs also useful
(angular part not monomial)
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Energy Flow Polynomials (EFPs)
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[PTK, Metodiev, Thaler, 1712.07124]

Linear basis of all IRC-safe observables

O = Z saEFP&

Degree Connected Multigraphs




Multiparticle

Ubiquitous observables at the LHC

Mass
M M
1 02
9 > D winth
i=1 j=1

DO | —

Definition of energy factor and pairwise angular distance
Correlators
_ Pri Y D
Zj pT; ij T Mg Pri P1; T (yi —y;)" + (¢i — ;)

central, narrow jet approximation

Energy Correlation Functions (ECFs)

Z Z “ip T RN H (97177%

in=1 ]<k5

[Larkoski, Salam, Thaler, 1305.0007; Larkoski, Moult, Neill, 1409.6298]

’1,1—

Used for multi-prong tagging,
typically in ratios , D2, Cy, C;3, etc.

Generalized ECFs also useful
(angular part not monomial)

Mass also calculated as

M
2.
i=1

which is O(M) to compute

What else is O(M)?!
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Energy Flow Polynomials (EFPs)
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[PTK, Metodiev, Thaler, 1712.07124]

Linear basis of all IRC-safe observables

O = Z saEFP&

Degree Connected Multigraphs
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Outline
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Experiment

Computational Complexity

Multiparticle correlators are O(M") to compute in general

Many can actually be computed in 6(M)

Linear Tensor ldentities

Multiparticle correlators exhibit mysterious linear redundancies
All redundancies understood via cutting graphs

Counting Superstring Amplitudes

Counting independent kinematic polynomials difficult
Immediate enumeration through multigraphs
Theory
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Computational Complexity — BOOST 2018

Naive computation complexity of an energy correlator is O(M")

EnergyCorrelator fjcontrib solution:
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Computational Complexity — BOOST 2018

Naive computation complexity of an energy correlator is O(M")

EnergyCorrelator fjcontrib solution:

// if N > 5, then throw error
if (N>5) {

throw Error("EnergyCorrelator is only hard coded for N = 0,1,2,3,4,5");

¥
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Computational Complexity — BOOST 2018

Naive computation complexity of an energy correlator is O(M")

EnergyCorrelator fjcontrib solution:

// if N > 5, then throw error
if (N>5) {

throw Error("EnergyCorrelator is only hard coded for N

¥

Variable elimination (VE) algorithm: 6(M%), y <N

Disconnected is product of connected

M M M

2
S S S | RiyRigRig ezlzg 97;22'3

’Ll—l 22—1 ’Lg—

14=115=1

1 3 5

VE find clever parentheses placement to minimize computation

M M M M M M M M
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M M 7 O(MS)
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i1=1 ir=1 All tree graphs become 6(M?)

\ -

O(M?)

x = N iff G is complete graph, ECFs still slow
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0,1,2,3,4,5");

[PTK, Metodiev, Thaler, 1712.07124]

@ Docs » Home

EnergyFlow Welcome to EnergyFlow

Home
Welcome to EnergyFlow
References

Copyright

EnergyFlow is a Python package containing a suite of particle physics tools. Originally designed to
i compute Energy Flow Polynomials (EFPs), as of version ©.16.6 the package expanded to include
implementations of Energy Flow Networks (EFNs) and Particle Flow Networks (PFNs). As of version
FAQs 0.11.0 , functions for facilitating the computation of the Energy Mover's Distance (EMD) on particle
physics events are included. To summarize the main features:

Energy Flow Polynomials . . " "
e Energy Flow Polynomials: EFPs are a collection of jet substructure observables which form a
Architectures complete linear basis of IRC-safe observables. EnergyFlow provides tools to compute EFPs on
events for several energy and angular measures as well as custom measures.

* Energy Flow Networks: EFNs are infrared- and collinear-safe models designed for learning from
collider events as unordered, variable-length sets of particles. EnergyFlow contains customizable
Keras implementations of EFNs.

Datasets

o Particle Flow Networks: PFNs are general models designed for learning from collider events as
unordered, variable-length sets of particles, based on the Deep Sets framework. EnergyFlow
contains customizable Keras implementations of PFNs.

e Energy Mover's Distance: The EMD is a common metric between probability distributions that
has been adapted for use as a metric between collider events. EnergyFlow contains code to

https://energyflow.network




Computational Complexity — BOOST 2018

BOOST 2019

Can we do better — perhaps O(M) as for mass?

Variable elimination (VE) algorithm: 6(M%), y <N

Disconnected is product of connected

M M M

2
S S S | RipRigRig (91122 9i2i3

’Ll—l 22—1 ’Lg—

14=115=1
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VE find clever parentheses placement to minimize computation
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=5 (St
=1 iz=1  All tree graphs become 6(M?)

x = N iff G is complete graph, ECFs still slow
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EnergyFlow

Home
‘Welcome to EnergyFlow
References

Copyright

Installation
Demo
Examples

FAQs

Energy Flow Polynomials
Architectures

EMD

Measures

Generation

Utils

Datasets

O GitHub

[PTK, Metodiev, Thaler, 1712.07124]
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Docs » Home

Welcome to EnergyFlow

EnergyFlow is a Python package containing a suite of particle physics tools. Originally designed to

compute Energy Flow Polynomials (EFPs), as of version ©.16.6 the package expanded to include

implementations of Energy Flow Networks (EFNs) and Particle Flow Networks (PFNs). As of version
0.11.0 , functions for facilitating the computation of the Energy Mover's Distance (EMD) on particle

physics events are included. To summarize the main features:

e Energy Flow Polynomials: EFPs are a collection of jet substructure observables which form a
complete linear basis of IRC-safe observables. EnergyFlow provides tools to compute EFPs on
events for several energy and angular measures as well as custom measures.

* Energy Flow Networks: EFNs are infrared- and collinear-safe models designed for learning from
collider events as unordered, variable-length sets of particles. EnergyFlow contains customizable
Keras implementations of EFNs.

o Particle Flow Networks: PFNs are general models designed for learning from collider events as
unordered, variable-length sets of particles, based on the Deep Sets framework. EnergyFlow
contains customizable Keras implementations of PFNs.

e Energy Mover's Distance: The EMD is a common metric between probability distributions that
has been adapted for use as a metric between collider events. EnergyFlow contains code to

https://energyflow.network



Energy Flow Moments (EFMs)

[PTK, Metodiev, Thaler, to appear soon]

L= n. =
0, 2n:n;, P =2 removes square root

Factors of nl” can be organized in optimal way

EFM, is a totally symmetric little group tensor

M
Ilul"',u’u — E Z@nfl « o e fn/iLU
1=1
v 001 2 3 4 5 6
(d=4) 1 4 10 20 35 56 84

components
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Energy Flow Moments (EFMs)

[PTK, Metodiev, Thaler, to appear soon]

0, =4/2n'n;, [ =72 removes square root EFMs result from cutting edges of EFP graph
Factors of nl” can be organized in optimal way | 7.5
Iy o'

70

EFM, is a totally symmetric little group tensor ag e
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M
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i=1 EFP contractions of EFMs
v 001 2 3 4 5 6
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Energy Flow Moments (EFMs)

0. = 2n”n

ij f = 2 removes square root

Factors of nl” can be organized in optimal way

EFM, is a totally symmetric little group tensor

M
K1y — ot SR ol
L = E 2 n;
i=1

v 001 2 3 4 5 6
(d=1)
1 4 10 20 35 56 84
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[PTK, Metodiev, Thaler, to appear soon]

EFMs result from cutting edges of EFP graph
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Naively 6(°) EFP shown to be 6(Mm)
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Energy Flow Moments (EFMs)

[PTK, Metodiev, Thaler, to appear soon]

0, =4/2nn;, p =72 removes square root EFMs result from cutting edges of EFP graph
Factors of nl” can be organized in optimal way | 7.5

A
A

EFM, is a totally symmetric little group tensor

M
H1- MUy O o N
ZL — E 2 n;
i=1

Iaﬂ’yc?
contractions of EFMs
v 001 2 3 4 5 6
(d=4)
components

1 4 10 20 35 56 84 A||ﬂ: 2 EFPs are @(M)

ECF](\ézz) are all O(M)
Dz(ﬁ =2), Cz(ﬁ =2) are O(M)
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Naively 6% EFP shown to b
aively O(M7) EFF shown to be O(M) See detailed derivation in backup
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Linear Tensor ldentities

Linear redundancies among EFPs are troublesome

Studying coefficients of linear fit difficult

O = Z saEFP,
G

Examples of redundancies

in 3 or fewer spacetime dimensions

0=2 -

0_6m12{\+6 S YACYANE
in 4 or fewer spacetime dimensions

(7oA
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Linear Tensor ldentities

Linear redundancies among EFPs are troublesome

Studying coefficients of linear fit difficult

O = Z saEFP,
G

Examples of redundancies

in 3 or fewer spacetime dimensions

0=2 —

Tensor ldentity Recipe

Consider tensor over n dimensional vector space
Antisymmetrize m > n indices

Result is zero because any assignment of n
possible values to m slots has a repetition

Tlf’l"'a’“ —0

L -be[er - Com]

Bonus: all tensor identities up to ones governed by
existing symmetries take above form

[Sneddon, Journal of Mathematical Physics]

06m12{\+6 S YACYANE
in 4 or fewer spacetime dimensions

A
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Linear Tensor ldentities

Linear redundancies among EFPs are troublesome

Studying coefficients of linear fit difficult

O = Z saEFP,
G

Examples of redundancies

in 3 or fewer spacetime dimensions

_ 7B T
0=2 — = 0=I 71,1775

[«

Tensor ldentity Recipe

Consider tensor over n dimensional vector space
Antisymmetrize m > n indices

Result is zero because any assignment of n
possible values to m slots has a repetition

Tlf’l"'a’“ —0

L -be[er - Com]

Bonus: all tensor identities up to ones governed by
existing symmetries take above form

[Sneddon, Journal of Mathematical Physics]

Oﬁmm{\-kﬁ +4A—2A —3 /\ = OZI[aIgZ,{fIg]I‘S

in 4 or fewer spacetime dimensions

MOLAN B
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Linear Tensor ldentities

Linear redundancies among EFPs are troublesome

Studying coefficients of linear fit difficult

O = Z saEFP,
G

Examples of redundancies

in 3 or fewer spacetime dimensions

_ 7B T
0=2 — = 0=I 71,1775

Tensor ldentity Recipe

Consider tensor over n dimensional vector space
Antisymmetrize m > n indices

Result is zero because any assignment of n
possible values to m slots has a repetition

Tlf’l"'a’“ —0

L -be[er - Com]

Bonus: all tensor identities up to ones governed by
existing symmetries take above form

[Sneddon, Journal of Mathematical Physics]

[«

06m12{\+6 +4A—2A -3
in 4 or fewer spacetime dimensions

= P = i i q _ 1B 7Y TéTeTOH
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Other types of identities — e.g. when M is small

A\ =/
0= ||| =2 0=2 — ||
/
®
M<?2

Could be useful in a partonic calculation, more in backup
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Counting Superstring Amplitudes

Constructing a basis of amplitudes — how large is it?
[Boels, 1304.7918; OEIS A226919]

non-isomorphic multigraph

|

Q:What is the number of symmetric polynomials
of degree d in kinematic variables s;; = p; - p;

up to momentum conservation? {0
2

M
0="> p :I“:I
1=1

A:Same as the number of non-isomorphic
multigraphs with no leaves (vertices of
valency one)
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Counting Superstring Amplitudes

New OEIS Entries!

Constructing a basis of amplitudes — how large is it? A307317,A307316
[Boels, 1304.7918; OEIS A226919] [PTK, Metodiev, Thaler, to appear soon]
non-isomorphic multigraph Leatless Multigraphs
Connected All
]I Edges d  A307317  A307316
1 0 0
Q:What is the number of symmetric polynomials 2 1 1
. . . . 3 2 2
of degree d in kinematic variables S;j = Di " D 1 A .
. ) 5 9 11
up to momentum conservation: {0 : ” »
5 7 68 87
I[ 92']- = 2n; - n; 8 217 279
M 9 718 897
_ N 10 2553 3129
’ sz L T 11 9574 11458
=1 12 38 005 44576
13 157 306 181 071
14 679 682 770237
A:Same as the number of non-isomorphic 15 3047699 3407332
_ . . 16 14150278 15641159
multigraphs with no leaves (vertices of

valency one) Bolded values previously unknown
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Summary

Experiment

Computational Complexity

,/ | Multiparticle correlators are OMM) to compute in general

[ = 2 EFPs can be computed in O(M)
Why not use Dz(ﬁ =2)? Performance in backup

Linear Tensor ldentities

Multiparticle correlators exhibit mysterious linear redundancies
All redundancies understood via cutting graphs
and applying master antisymmetrization identity

Counting Superstring Amplitudes

Counting independent kinematic polynomials difficult
Immediate enumeration through multigraphs
and new OEIS sequences! Theory
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Rewriting General EFP as Contraction of EFMs

M M
EFPqo = Z T Z i1 " RiN H 277/an;kniye

11=1 IN = (k,0)eG

N M o g
K1 Ho vj
25 TV 1L 7 e T 2 k Y
HZ YTy T vj II nNAMNA%

j=1i;=1 (k,0)€G

N J,J '

oy
HZMLUQ Ko ; H 277/#“ W
i (h0)eG A Ak
J— L) &

|
o~

EF Ms Contraction of edges

TL;DR — edges of EFP with f = 2 can be cut and rearranged into EFMs
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Two-Prong Classification with Varying s

f = 2 for both D, and C, for both Pythia 8 and Herwig++
works better than f = 1 for Z vs. QCD

[Larkoski, Moult, Neill, 1409.6298]

Z. Boson vs. QCD (Pythia 8) Z. Boson vs. QCD (Herwig++)
1| my<100 GeV, pr>400 GeV,Rp=1.0 1| my<100 GeV, pr>400 GeV, Rp=1.0
S 0.1] S 0.1]
k> | k> |
Q I Q I
n 1077 P~ 4 o 107 /', -
Q | -7 s Q .
< | g 0.5) (0.5) < g (0.5) (0.5)
1073} 7 " 0 10 (1) (1)
o p=2: --C9 — DY | -4 p=2: --CY — DY
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Z Efficiency Z Efficiency
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Additional Linear ldentities

All identities fundamentally due to antisymmetrizing over more indices than dimensions

Finite spacetime dimension — # = 2 only

0=2 — d<3

(A

Finite particle number — cutting open vertices

"hamburger tensors"

MG:\/Zil'“Z H Qik’ie

(k,0)eG

graph rules
= V%, j k= Ok

11

— e 3 e
T \/221222 ZZB 92122 97'17'3

19 13
|dentities come from antisymmetrizing over
M + 1 or more vertex indices, works for any 0!
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Euclidean subslicing — e*e™ only
ete”: nt' = (1,n)"

Presence of 1 means that d dim. tensors are

exactly related to d — 1 dim tensors
and hence satisfy more identities

ex.— holds ind < 4 foreTe™

SN




Additional Linear Relation Material

Lorentzian graphs , ,
o — —— Cutting vertices demonstrates
LI AT AN N matrix multiplication can be
‘ 1 used to calculate some graphs
2 -1
0 1 -4 1 S 3
/\ 1 -4 1 Z].
‘ ’ 1 -4 1 o
® 8 -12 6 -1
/\ 8 ~12 6 -1 .
I\ 8 ~12 2 4 -1 E— tI'
[7,) /I\ 8 -12 6 -1
< | A . ‘ ~
[a N 8 12 4 2 1
<
&o |0 8 -12 2 1 -1 7:2‘
g ’/\ 8 -12 2 1 -1
)
nw) ‘ ’ ’ 8 ~12 6 -1
T:) o 16 -32 24 -8 1
L N\ 16 -32 8 16 -8
/\ 16 -32 | 4 20 -4 -4
I\ 16 32 | 12 12 2 -6 ~ @(M23728639)
@ 16 ~32 16 8 -8
— 16 -32 20 1 -2 -2 -4
|/\ 16 -32 1 16 1 —4 —4
|/\ 16 -32 1 12 8 -2 -4 -2
A\ 16 -32 1 20 —4 —4
AN 16 -32 24 -8
(N e | e 16 8 -2 -2 Works for all angular measures
|/\| 16 -32 12 12 —4 -4
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