OmniFold Simultaneously Unfolding All Observables with Deep Learning

Patrick T. Komiske III

Massachusetts Institute of Technology **Center for Theoretical Physics**

Based on work with Anders Andreassen, Eric Metodiev, Ben Nachman, and Jesse Thaler <u>1911.09107</u> (PRL)

CMS Machine Learning Forum

February 10, 2021

Patrick Komiske – Improved Unfolding with Deep Learning

OmniFold

Unfolding Beyond Observables

Unfolding Setup

Patrick Komiske – Improved Unfolding with Deep Learning

Unfolding Setup

OmniFold

Unfolding Beyond Observables

Correcting for Detector Effects

- Detectors introduce (potentially correlated) smearing and biasing that must be corrected in any measurement

Forward folding simulates given truth-level events and calculates detector-level quantities

Detector response varies according to jet mass and pT Explicitly depends on specific detector geometry

Patrick Komiske – Improved Unfolding with Deep Learning

• Material interactions and detector geometry modeled with sophisticated (i.e. expensive) simulation software (e.g. GEANT4)

Unfolding estimates truth-level quantities given experimental data and information about detector response

> Soft Drop Jet Mass Measurement ATLAS Vs= 13 TeV, 32.9 fb⁻¹ Pythia 8. anti- $k_t R=0.8$, $p_{\tau}^{lead} > 600 GeV$ erwig++ 2.7 Soft drop, $\beta = 0, z = 0.1$ LO+NNLL NLO+NLL+NF log σ (1 / σ. Ratio to Data $n^{\text{soft drop}} / p_{T}^{\text{ungroomed}})^2$ log₁₀[(m

Comparison to precision theory possible in detector-independent manner Measurement can be used by anyone, no need for detailed experimental information

[ATLAS, <u>PRL 2018]</u>

Patrick Komiske – Improved Unfolding with Deep Learning

Particle-level

Patrick Komiske – Improved Unfolding with Deep Learning

Particle-level

PYTHIA, HERWIG, SHERPA

Patrick Komiske – Improved Unfolding with Deep Learning

Goal of unfolding is to learn a generative particle-level model that reproduces the data

WLOG, the generative model can be MC generator + weighting function on particle-level phase space

Patrick Komiske – Improved Unfolding with Deep Learning

Truth-level measurements can be compared across experiments and to theoretical calculations

	Particle-level
LICE	Truth
	Pythia, Herwig, Sherpa
	Generation
sponse from <i>trustable</i> simulation	

Challenges with Traditional Unfolding

Previous methods are inherently binned

Binning fixed ahead of time, cannot be changed later Performance of method sensitive to binning

Limited number of observables

Binning induces curse of dimensionality

Response matrix depends on auxiliary features

Detector-level quantity may not capture full detector effect

Challenges with Traditional Unfolding

Previous methods are inherently binned

Binning fixed ahead of time, cannot be changed later Performance of method sensitive to binning

Limited number of observables

Binning induces curse of dimensionality

Response matrix depends on auxiliary features

Detector-level quantity may not capture full detector effect

Patrick Komiske – Improved Unfolding with Deep Learning

Challenges with Traditional Unfolding

Previous methods are inherently binned

Binning fixed ahead of time, cannot be changed later Performance of method sensitive to binning

Limited number of observables

Binning induces curse of dimensionality

Response matrix depends on auxiliary features

Detector-level quantity may not capture full detector effect

Patrick Komiske – Improved Unfolding with Deep Learning

Example with IBU

ATLAS State-of-the-art Lund Plane Measurement [<u>PRL 2020]</u> **ATLAS** Preliminary $\sqrt{s} = 13$ TeV, 139 fb⁻¹ ____ 0.08 ____ ln(1/z)0.07 0.06 0.05 0.05 0.05 $p_{\rm T}^{\rm core}$) / (p_T^en 10⁻² 0.04 $p_{\rm T}^{\rm er}$ 0.03 10-م 20 י 0.01 0 0.5 1 1.5 2 2.5 3 3.5 10^{-} $\Delta R = \Delta R$ (emission, core)

21 x 15 bins in $\ln(1/z) \times \ln(R/\Delta R)$

- Must redo unfolding for other binnings e.g. finer/coarser, k_T (diagonal) binning, etc.

Limited to two observables

- $2I^2 \times I5^2$ elements in response matrix R
- Going differential in n bins of p_T would multiply size of R by n^2

Traditional Unfolding

Patrick Komiske – Improved Unfolding with Deep Learning

Maximum likelihood, histogram-based unfolding method for a small number of observables

Choose observable(s) and binning at detector-level and particle-level

measured distribution: $m_i = Pr(\text{measure } i)$ true distribution: $t_i^{(0)} = \Pr(\text{truth is } j)$

Calculate response matrix R_{ii} from generated/simulated pairs of events

 $R_{ij} = \Pr(\text{measure } i \mid \text{truth is } j)$

Calculate new particle-level distribution using Bayes' theorem

$$t_{j}^{(n)} = \sum_{i} \Pr(\operatorname{truth}_{n-1} \text{ is } j \mid \operatorname{measure} i) \times \Pr(\operatorname{measure} i)$$
$$= \sum_{i}^{i} \frac{R_{ij} t_{j}^{(n-1)}}{\sum_{k} R_{ik} t_{k}^{(n-1)}} \times m_{i}$$

Iterate procedure to remove dependence on prior

Consider a situation with two particle-level bins and two detector-level bins

$$R_{ij} = \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix}_{ij}$$

Uniform prior

Bins are measured equally

Bin I reconstructed perfectly Bin 2 reconstructed equally

Maximum likelihood, histogram-based unfolding method for a small number of observables

Choose observable(s) and binning at detector-level and particle-level

measured distribution: $m_i = Pr(\text{measure } i)$ true distribution: $t_i^{(0)} = \Pr(\text{truth is } j)$

Calculate response matrix R_{ij} from generated/simulated pairs of events

 $R_{ij} = \Pr(\text{measure } i \mid \text{truth is } j)$

Calculate new particle-level distribution using Bayes' theorem

$$t_{j}^{(n)} = \sum_{i} \Pr(\operatorname{truth}_{n-1} \text{ is } j \mid \operatorname{measure} i) \times \Pr(\operatorname{measure} i)$$
$$= \sum_{i}^{i} \frac{R_{ij} t_{j}^{(n-1)}}{\sum_{k} R_{ik} t_{k}^{(n-1)}} \times m_{i}$$

Iterate procedure to remove dependence on prior

Consider a situation with two particle-level bins and two detector-level bins

$$t_j^{(0)} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}_j$$

$$R_{ij} = \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix}_{ij}$$

Uniform prior

Bins are measured equally

Bin I reconstructed perfectly Bin 2 reconstructed equally

After one iteration

Maximum likelihood, histogram-based unfolding method for a small number of observables

Choose observable(s) and binning at detector-level and particle-level

measured distribution: $m_i = Pr(\text{measure } i)$ true distribution: $t_i^{(0)} = \Pr(\text{truth is } j)$

Calculate response matrix R_{ij} from generated/simulated pairs of events

 $R_{ij} = \Pr(\text{measure } i \mid \text{truth is } j)$

Calculate new particle-level distribution using Bayes' theorem

$$t_{j}^{(n)} = \sum_{i} \Pr(\operatorname{truth}_{n-1} \text{ is } j \mid \operatorname{measure} i) \times \Pr(\operatorname{measure} i)$$
$$= \sum_{i}^{i} \frac{R_{ij} t_{j}^{(n-1)}}{\sum_{k} R_{ik} t_{k}^{(n-1)}} \times m_{i}$$

Iterate procedure to remove dependence on prior

Maximum likelihood, histogram-based unfolding method for a small number of observables

Choose observable(s) and binning at detector-level and particle-level

measured distribution: $m_i = Pr(\text{measure } i)$ true distribution: $t_i^{(0)} = \Pr(\text{truth is } j)$

Calculate response matrix R_{ij} from generated/simulated pairs of events

 $R_{ij} = \Pr(\text{measure } i \mid \text{truth is } j)$

Calculate new particle-level distribution using Bayes' theorem

$$t_{j}^{(n)} = \sum_{i} \Pr(\operatorname{truth}_{n-1} \text{ is } j \mid \operatorname{measure} i) \times \Pr(\operatorname{measure} i)$$
$$= \sum_{i}^{i} \frac{R_{ij} t_{j}^{(n-1)}}{\sum_{k} R_{ik} t_{k}^{(n-1)}} \times m_{i}$$

Iterate procedure to remove dependence on prior

At the nth iteration

At the nth iteration

prior

Patrick Komiske – Improved Unfolding with Deep Learning

At the nth iteration

Patrick Komiske – Improved Unfolding with Deep Learning

At the nth iteration

Patrick Komiske – Improved Unfolding with Deep Learning

At the nth iteration

Patrick Komiske – Improved Unfolding with Deep Learning

At the nth iteration

Patrick Komiske – Improved Unfolding with Deep Learning

At the nth iteration

Patrick Komiske – Improved Unfolding with Deep Learning

At the nth iteration

Patrick Komiske – Improved Unfolding with Deep Learning

Unfolding Setup

OmniFold

Unfolding Beyond Observables

OmniFold Algorithm – Schematic

OmniFold weights particle-level **Gen** to be consistent with Data once passed through the detector

[Andreassen, **PTK**, Metodiev, Nachman, Thaler, <u>PRL 2020</u>]

OmniFold Algorithm – Schematic

OmniFold weights particle-level **Gen** to be consistent with Data once passed through the detector

Step 1

- Reweights Sim_{n-1} to data - Pulls weights back to particle-level Genn-1

Incorporates the response matrix

Patrick Komiske – Improved Unfolding with Deep Learning

OmniFold Algorithm – Schematic

OmniFold weights particle-level **Gen** to be consistent with Data once passed through the detector

Step 1

- Reweights Sim_{n-1} to data - Pulls weights back to particle-level Genn-1

Incorporates the response matrix

Step 2

- Reweights Genn-1 to (step 1)-weighted genn-1 – Pushes weights to detector-level Simn

> Constructs valid particle-level function by averaging gen-level weights

Patrick Komiske – Improved Unfolding with Deep Learning

Patrick Komiske – Improved Unfolding with Deep Learning

Consider a situation with two particle-level bins and two detector-level bins

At the nth iteration

Patrick Komiske – Improved Unfolding with Deep Learning

Consider a situation with two particle-level bins and two detector-level bins

At the nth iteration

Unfolding via Likelihood Reweighting

Patrick Komiske – Improved Unfolding with Deep Learning

Likelihood ratio is optimal binary classifier by Neyman-Pearson lemma

- $L[(w, X), (w', X')](x) = \frac{p_{(w, X)}(x)}{p_{(w', X')}(x)} \qquad \begin{array}{l} & L \\ & w \text{weights} \\ & X \text{phase space} \end{array}$
- L likelihood ratio

 - x element of X
 - p probability density

Unfolding via Likelihood Reweighting

Likelihood ratio is optimal binary classifier by Neyman-Pearson lemma

 $\mathsf{Model}[(w, X), (w', X')](x) \simeq \frac{L[(w, X), (w', X')](x)}{1 + L[(w, X), (w', X')](x)} \quad \mathsf{Assuming \ softmax \ output}$

Patrick Komiske – Improved Unfolding with Deep Learning

- L likelihood ratio $L[(w, X), (w', X')](x) = \frac{p_{(w, X)}(x)}{p_{(w', X')}(x)} \qquad \begin{array}{l} w - \text{weights} \\ X - \text{phase space} \end{array}$ x – element of Xp - probability density

Model output of a well-trained classifier accesses likelihood ratio

[Cranmer, Pavez, Louppe, 1506.02169; Andreassen, Nachman, PRD 2020]

Unfolding via Likelihood Reweighting

Likelihood ratio is optimal binary classifier by Neyman-Pearson lemma

Model output of a well-trained classifier accesses likelihood ratio

 $\mathsf{Model}[(w, X), (w', X')](x) \simeq \frac{L[(w, X), (w', X')](x)}{1 + L[(w, X), (w', X')](x)} \quad \text{Assuming softmax output}$

OmniFold repeatedly reweights one weighted sample (A) to another (B)

$$w_{A'}(x) = w_A(x) imes rac{\mathsf{Model}[(w_B, B), 0]}{1 - \mathsf{Model}[(w_B, B)]}$$

Likelihood reweighting benefits from architectural improvements

L – likelihood ratio $L[(w, X), (w', X')](x) = \frac{p_{(w, X)}(x)}{p_{(w', X')}(x)} \qquad \begin{array}{l} w - \text{weights} \\ X - \text{phase space} \end{array}$ x – element of Xp - probability density

[Cranmer, Pavez, Louppe, 1506.02169; Andreassen, Nachman, PRD 2020]

 $\frac{(w_A, A)](x)}{(w_A, A)](x)} \quad A' \text{ is statistically indistinguishable from } B$

OmniFold Algorithm – Equations

Inputs

(t, m) – pairs of Gen and Sim events $\nu_0(t)$ – initial particle-level weights for Gen – Data

Results of Steps 1 and 2

 $\nu_n(t)$ – particle-level weights for Gen, nth iteration $\omega_n(m)$ – detector-level weights for Sim, nth iteration

Pulling/Pushing Weights

 $\omega_n^{\text{pull}}(t) = \omega_n(m) - \text{pulling } \omega_n \text{ back to particle-level}$ $\nu_n^{\text{push}}(m) = \nu_n(t) - \text{pushing } \nu_n$ to detector-level

[Andreassen, PTK, Metodiev, Nachman, Thaler, PRL 2020]

OmniFold Algorithm – Equations

Inputs

(t, m) – pairs of Gen and Sim events $\nu_0(t)$ – initial particle-level weights for Gen – Data

Results of Steps 1 and 2

 $\nu_n(t)$ – particle-level weights for Gen, nth iteration $\omega_n(m)$ – detector-level weights for Sim, nth iteration

Pulling/Pushing Weights

 $\omega_n^{\text{pull}}(t) = \omega_n(m) - \text{pulling } \omega_n \text{ back to particle-level}$ $\nu_n^{\text{push}}(m) = \nu_n(t) - \text{pushing } \nu_n$ to detector-level

OmniFold

Step 1 - $\omega_n(m) = \nu_{n-1}^{\text{push}} \times L[(1, \text{Data}), (\nu_{n-1}^{\text{push}}, \text{Sim})](m)$ Step 2 - $\nu_n(t) = \nu_{n-1}(t) \times L[(\omega_n^{\text{pull}}, \text{Gen}), (\nu_{n-1}, \text{Gen})](t)$

Unfold any* observable $p_{Gen}(t)$ using universal weights $\nu_n(t)$

$$p_{\text{unfolded}}^{(n)}(t) = \nu_n(t) \times p_{\text{Gen}}(t)$$

[Andreassen, PTK, Metodiev, Nachman, Thaler, PRL 2020]

*Observables should be chosen responsibly

OmniFold Algorithm – Equations

Inputs

(t, m) – pairs of Gen and Sim events $\nu_0(t)$ – initial particle-level weights for Gen – Data

Results of Steps 1 and 2

 $\nu_n(t)$ – particle-level weights for Gen, nth iteration $\omega_n(m)$ – detector-level weights for Sim, nth iteration

Pulling/Pushing Weights

 $\omega_n^{\text{pull}}(t) = \omega_n(m) - \text{pulling } \omega_n \text{ back to particle-level}$ $\nu_n^{\text{push}}(m) = \nu_n(t) - \text{pushing } \nu_n$ to detector-level

OmniFold

Step 1 - $\omega_n(m) = \nu_{n-1}^{\text{push}} \times L[(1, \text{Data}), (\nu_{n-1}^{\text{push}}, \text{Sim})](m)$ Step 2 - $\nu_n(t) = \nu_{n-1}(t) \times L[(\omega_n^{\text{pull}}, \text{Gen}), (\nu_{n-1}, \text{Gen})](t)$

Unfold any* observable $p_{Gen}(t)$ using universal weights $\nu_n(t)$

$$p_{\text{unfolded}}^{(n)}(t) = \nu_n(t) \times p_{\text{Gen}}(t)$$

[Andreassen, PTK, Metodiev, Nachman, Thaler, PRL 2020]

OmniFold is continuous IBU!

After first iteration, with $\nu_0(t) = 1$:

$$\nu_1(t)p_{\text{Gen}}(t) = \int dm \, p_{\text{Gen}|\text{Sim}}(t|m) \, p_{\text{Data}}(m)$$

*Observables should be chosen responsibly

Constructing High-Dimensional Classifiers

Patrick Komiske – Improved Unfolding with Deep Learning

How to represent jets to a machine learning architecture?

An unordered, variable length collection of particles

Due to quantum-mechanical indistinguishability Due to probabilistic nature of jet formation

$$J(\{p_1^{\mu}, \dots, p_M^{\mu}\}) = J(\{p_{\pi(1)}^{\mu}, \dots, p_{\pi(M)}^{\mu}\}), \quad \underbrace{M \ge 1}_{\text{Multiplicity}}, \quad \underbrace{\forall \pi \in S_M}_{\text{Permutations}}$$

 p_i^{μ} represents all the particle properties:

- Four-momentum (E, p_x, p_y, p_y)
- Other quantum numbers (e.g. particle id, charge)

Methods for processing point clouds/jets should respect the appropriate symmetries

Patrick Komiske – Improved Unfolding with Deep Learning

$$(z_z)_i^\mu$$

Experimental information (e.g. vertex info, quality criteria, tracking info)

Machine Learning for Point Clouds – Deep Sets

Deep Sets

¹ Carnegie Mellon University

arbitrarily good approximation:¹

$$f(\{x_1,\ldots,x_M\}) = F\left(\sum_{i=1}^M \Phi(x_i)\right)$$

A general permutation-symmetric function is additive in a latent space

[<u>1703.06114</u>]

Manzil Zaheer^{1,2}, Satwik Kottur¹, Siamak Ravanbhakhsh¹, Barnabás Póczos¹, Ruslan Salakhutdinov¹, Alexander J Smola^{1,2} ² Amazon Web Services

Deep Sets Theorem [63]. Let $\mathfrak{X} \subset \mathbb{R}^d$ be compact, $X \subset 2^{\mathfrak{X}}$ be the space of sets with bounded cardinality of elements in \mathfrak{X} , and $Y \subset \mathbb{R}$ be a bounded interval. Consider a continuous function $f: X \to Y$ that is invariant under permutations of its inputs, i.e. $f(x_1, \ldots, x_M) =$ $f(x_{\pi(1)},\ldots,x_{\pi(M)})$ for all $x_i \in \mathfrak{X}$ and $\pi \in S_M$. Then there exists a sufficiently large integer ℓ and continuous functions $\Phi: \mathfrak{X} \to \mathbb{R}^{\ell}, F: \mathbb{R}^{\ell} \to Y$ such that the following holds to an

Machine Learning for Point Clouds – Deep Sets

A general permutation-symmetric function is additive in a latent space

Patrick Komiske – Improved Unfolding with Deep Learning

General parametrization for a function of sets

Approximating Φ and F with Neural Networks

Employ neural networks as arbitrary function approximators

Use fully-connected networks for simplicity

Default sizes $-\Phi$: (100, 100, ℓ), F: (100, 100, 100)

Particles Observable Per–Particle Representation **Event Representation** Latent Space Φ Φ Φ Energy/Particle Flow Network

Patrick Komiske – Improved Unfolding with Deep Learning

Testing OmniFold

Ingredients for Z + Jet Case Study

 $Z(\rightarrow \mu^+\mu^-)$ + Jet Events "Data" – HERWIG 7.1.5 MC – PYTHIA 8.243, tune 26 1.6 million events each after cuts **Detector Simulation** CMS-like detector – DELPHES 3.4.2 lets Anti- $k_T, R = 0.4 - FASTJET 3.3.2$ $p_T^Z > 200$ GeV, assume excellent muon detector resolution

Datasets publicly available -With two additional Pythia tunes -Accessible via <u>EnergyFlow</u>

OmniFold Binder Demo

Particle Flow Network (PFN) architecture processes full radiation pattern of the event

- **PFN-Ex:** (p_T, y, ϕ, PID) input features
- Φ : (100, 100, 256) dense layers
- *F* : (100,100,100) dense layers
- ReLU activations, softmax output
- Categorical cross-entropy loss
- 20% validation sample
- 10 epoch patience

OmniFolding Jet Substructure Observables

Single OmniFold instantiation vs. repeated applications of IBU

OmniFold equals or outperforms IBU

- Five unfolding iterations in all cases
- Statistical uncertainties on prior shown in ratio

(See <u>backup</u> for more on soft drop)

Additional OmniFolded Distributions

Patrick Komiske – Improved Unfolding with Deep Learning

$$-\sum_{ij} \sum_{i} p_{Ti} \sqrt{(y_i - y_j)^2 + (\phi_i - \phi_j)^2}$$

OmniFold Results by Event Representation

OMNIFOLD – full phase space information MULTIFOLD – multiple observables UNIFOLD – single observable, essentially unbinned IBU

OMNIFOLD *(MULTIFOLD outperforms IBU on all observables)*

Patrick Komiske – Improved Unfolding with Deep Learning

User is free to choose event representation in the OmniFold procedure

	Observable					
Method	m	M	w	$\ln \rho$	$ au_{21}$	z_g
OmniFold	2.77	0.33	0.10	0.35	0.53	0.68
MultiFold	3.80	0.89	0.09	0.37	0.26	0.15
UniFold	8.82	1.46	0.15	0.59	1.11	0.59
IBU	9.31	1.51	0.11	0.71	1.10	0.37
Data	24.6	130	15.7	14.2	11.1	3.76
Generation	3.62	15	22.4	19	20.8	3.84
	mass	mult.	width		<u> </u>	N-si
	groomed mass					

Evaluate performance using triangular discriminator

Single **MULTIFOLD** training based on all six observables **UNIFOLD** is similar to or outperforms IBU

Patrick Komiske – Improved Unfolding with Deep Learning

Unfolding Setup

OmniFold

Unfolding Beyond Observables

Optimal Transport in Particle Physics

Patrick Komiske – Improved Unfolding with Deep Learning

When are Two Distributions Similar?

Patrick Komiske – Improved Unfolding with Deep Learning

Optimal transport minimizes the "work" (stuff x distance) required to transport supply to demand

[Monge, 1781; Vaseršteĭn, 1969; Peleg, Werman, Rom, <u>IEEE 1989;</u> Rubner, Tomasi, Guibas, ICCV 1998, ICJV 2000; Pele, Werman, ECCV 2008; Pele, Taskar, GSI 2013]

When are Two Events similar?

[Peleg, Werman, Rom, IEEE 1989; Rubner, Tomasi, Guibas, ICCV 1998, ICJV 2000; Pele, Werman, ECCV 2008; Pele, Taskar, GSI 2013]

Patrick Komiske – Improved Unfolding with Deep Learning

[PTK, Metodiev, Thaler, PRL 2019]

Optimal transport minimizes the "work" (stuff x distance) required to transport supply to demand

 $\theta_{ij} = \sqrt{\Delta y_{ij}^2 + \Delta \phi_{ij}^2}$

When are Two Events similar?

[Peleg, Werman, Rom, IEEE 1989; Rubner, Tomasi, Guibas, ICCV 1998, ICJV 2000; Pele, Werman, ECCV 2008; Pele, Taskar, GSI 2013]

Patrick Komiske – Improved Unfolding with Deep Learning

[PTK, Metodiev, Thaler, PRL 2019]

Optimal transport minimizes the "work" (stuff x distance) required to transport supply to demand

symmetric, non-negative, triangle inequality, zero iff identical

 $\theta_{ij} = \sqrt{\Delta y_{ij}^2 + \Delta \phi_{ij}^2}$

The Energy Mover's Distance (EMD)

EMD between energy flows defines a metric on the space of events

$$\operatorname{EMD}_{\beta,R}(\mathcal{E}, \mathcal{E}') = \min_{\{f_{ij} \ge 0\}} \sum_{i} \sum_{j} f_{ij} \left(\frac{\theta_{ij}}{R}\right)^{\beta} + \left| \sum_{i} \int_{i} f_{ij} \le 0 \right|_{i} \int_{i} f_{ij} \le 0 \int_{i} f_{ij} \underbrace{f_{ij} = 0 \int_{i} f_{ij} \underbrace{f_{ij} = 0 \int_$$

R: controls cost of transporting energy vs. destroying/creating it β : angular weighting exponent

Triangle inequality satisfied for $R \ge d_{\max}/2$ $0 \leq \text{EMD}(\mathcal{E}, \mathcal{E}') \leq \text{EMD}(\mathcal{E}, \mathcal{E}'') + \text{EMD}(\mathcal{E}'', \mathcal{E}')$ i.e. $R \ge jet$ radius for conical jets

Quantifying Event-Space Manifolds

Correlation dimension: how does the # of elements within a ball of size Q change?

Decays are "constant" dim. at low QComplexity hierarchy: QCD < W < Top Fragmentation increases dim. at smaller scales Hadronization important around 20-30 GeV

Patrick Komiske – Improved Unfolding with Deep Learning

Energy Scale Q (GeV)

[[]Grassberger, Procaccia, PRL 1983]

Unfolding Beyond Observables

Weighted events naturally accommodated

Patrick Komiske – Improved Unfolding with Deep Learning

Unfolding Beyond Observables

Weighted events naturally accommodated

Patrick Komiske – Improved Unfolding with Deep Learning

Unfolding Beyond Observables

Weighted events naturally accommodated

Patrick Komiske – Improved Unfolding with Deep Learning

Same OmniFold training can unfold a complicated function of pairs of events!

Larger detector effects and loss of stats seen at low Q

 μ^+

 μ^{-}

Beyond Observables via Weighted Cross Sections

Standard observables

Calculates a single number for each jet/event and study the distribution of values

Weighted cross section Calculate a distributional quantity per event and study the mean distribution

Patrick Komiske – Improved Unfolding with Deep Learning

$$\mathcal{E}(\hat{n}) = \int_{0}^{\infty} dt \lim_{r \to \infty} r^2 n^i T_{0i}(n)$$

Stress-energy flow

[PTK, Moult, Thaler, Zhu, to appear soon]

Beyond Observables via Weighted Cross Sections

Standard observables

Calculates a single number for each jet/event and study the distribution of values

Weighted cross section Calculate a distributional quantity per event and study the mean distribution

e.g. energy-energy correlator (EEC)

Patrick Komiske – Improved Unfolding with Deep Learning

$$\mathcal{E}(\hat{n}) = \int_{0}^{\infty} dt \lim_{r \to \infty} r^2 n^i T_{0i}(x)$$

Stress-energy flow

Beyond Observables via Weighted Cross Sections

Standard observables

Calculates a single number for each jet/event and study the distribution of values

Weighted cross section Calculate a distributional quantity per event and study the mean distribution

e.g. energy-energy correlator (EEC)

Patrick Komiske – Improved Unfolding with Deep Learning

$$\frac{1}{\sigma_{\text{tot}}} \frac{d\sigma}{d\hat{n}_1 \cdots d\hat{n}_N} = \frac{\langle \mathcal{OE}(\hat{n}_1) \cdots \mathcal{E}(\hat{n}_N) \mathcal{O}^{\dagger} \rangle}{\langle \mathcal{OO}^{\dagger} \rangle}$$

Correlations of energy flow operators can be directly studied!

[PTK, Moult, Thaler, Zhu, to appear soon]

Patrick Komiske – Improved Unfolding with Deep Learning

Unfolding Setup

OmniFold

Unfolding Beyond Observables

- Unfolding corrects distributions for detector effects using detector simulation in a *prior independent* manner

- Traditional unfolding (e.g. IBU) is based on histograms and limited to a few observables due to the curse of dimensionality

– Maximum likelihood solution to the unfolding problem (like IBU) - Likelihood-free inference uses high-dim. classifiers to capture the full phase-space - Learns a single particle-level weighting function that unfolds all observables

- Non-per-event quantities can be of broad interest in particle physics - Traditional unfolding is challenged due to reliance on low-dimensional histograms - Can be unfolded with OmniFold as easily and naturally as any other quantity

Patrick Komiske – Improved Unfolding with Deep Learning

Additional Slides

OmniFold Etymology

The Mountain sat upon the Plain In his tremendous Chair – His observation **omnifold**, His inquest, everywhere –

The Seasons played around his knees Like Children round a sire – Grandfather of the Days is He Of Dawn, the Ancestor –

Emily Dickinson, #975

Patrick Komiske – Improved Unfolding with Deep Learning

Particle Collider Events

High-energy collisions produce final state particles with energy, direction, charge, flavor, and other quantum numbers

Patrick Komiske – Improved Unfolding with Deep Learning

e.g. the ATLAS detector

Jets at the Large Hadron Collider

CMS hadronic $t\overline{t}$ event

Patrick Komiske – Improved Unfolding with Deep Learning

Jet substructure techniques enabled by fantastic detector resolution and reconstruction

Standard Model of Particle Physics

Patrick Komiske – Improved Unfolding with Deep Learning

Heavy particles that further decay

Patrick Komiske – Improved Unfolding with Deep Learning

Particle Flow Network (PFN)

$$\operatorname{PFN}(\{p_1^{\mu}, \dots, p_M^{\mu}\}) = F\left(\sum_{i=1}^M \Phi(p_i^{\mu})\right)$$

Fully general latent space

Energy Flow Network (EFN)

$$\operatorname{EFN}(\{p_1^{\mu},\ldots,p_M^{\mu}\}) = F\left(\sum_{i=1}^M z_i \Phi(\hat{p}_i)\right)$$

IRC-safe latent space

Patrick Komiske – Improved Unfolding with Deep Learning

Energy/Particle Flow Networks (EFNs/PFNs) Zaheer, Kottur, Ravanbhakhsh, Póczos, Salakhutdinov, Smola, 1703.06114; PTK Metodiev Thaler, 1810.05165; PTK, Metodiev, Thaler, <u>1810.05165;</u> **EnergyFlow Python Package**]

Particle Flow Network (PFN)

$$\operatorname{PFN}(\{p_1^{\mu}, \dots, p_M^{\mu}\}) = F\left(\sum_{i=1}^M \Phi(p_i^{\mu})\right)$$

Fully general latent space

Energy Flow Network (EFN)

$$\operatorname{EFN}(\{p_1^{\mu},\ldots,p_M^{\mu}\}) = F\left(\sum_{i=1}^M z_i \Phi(\hat{p}_i)\right)$$

IRC-safe latent space

Patrick Komiske – Improved Unfolding with Deep Learning

Energy/Particle Flow Networks (EFNs/PFNs) Zaheer, Kottur, Ravanbhakhsh, Póczos, Salakhutdinov, Smola, 1703.06114; PTK. Metodiev Thaler, 1810.05165; PTK, Metodiev, Thaler, 1810.05165; EnergyFlow Python Package]

Improved performance (and training) compared to RNN and CNN

Energy/Particle Flow Networks (EFNs/PFNs)^{Zaheer, Kottur, Ravanbhakhsh, Póczos, Salakhutdinov, Smola, 1703.06114;}

Particle Flow Network (PFN)

$$\operatorname{PFN}(\{p_1^{\mu}, \dots, p_M^{\mu}\}) = F\left(\sum_{i=1}^M \Phi(p_i^{\mu})\right)$$

Fully general latent space

Energy Flow Network (EFN)

$$\operatorname{EFN}(\{p_1^{\mu},\ldots,p_M^{\mu}\}) = F\left(\sum_{i=1}^M z_i \Phi(\hat{p}_i)\right)$$

IRC-safe latent space

Patrick Komiske – Improved Unfolding with Deep Learning

PTK, Metodiev, Thaler, 1810.05165; EnergyFlow Python Package]

Improved performance (and training) compared to RNN and CNN

Latent space visualization reveals what the network has learned

Dynamic pixel sizing related to collinear singularity of QCD!

Quark vs. Gluon: Classification Performance

PFN-ID: Full particle flavor info $(\gamma, \pi^{\pm}, K^{\pm}, K_L, p, \bar{p}, n, \bar{n}, e^{\pm}, \mu^{\pm})$ **PFN-Ex:** Experimentally accessible info $(\gamma, h^{\pm,0}, e^{\pm}, \mu^{\pm})$ **PFN-Ch:** Particle charge info (+,0,-)**PFN**: No particle type info, arbitrary energy dependence

EFN: IRC-safe latent space

Latent space dimension $\ell = 256$

PFN-ID better than **RNN-ID**

EFPs are comparable to EFN

Quark vs. Gluon: Latent Dimension Sweep

Dealing with Uncertainties

Sources of uncertainty in a statistical analysis

[Nachman, <u>1909.03081</u>]

Parametrized models could enable efficient profiling to handle systematic uncertainties

[similar to Baldi, Cranmer, Faucett, Sadowski, Whiteson, 1601.07913]

Training a neural network on several different signal masses and allowing it to interpolate between them

Diagrams by Jesse Thaler

Contaminating radiation in jets necessitates grooming

Soft Drop

Soft Drop algorithm

Calculating mass on SD jets

Groomed Clustering Tree θ_{g} $z_g > z_{cut} \theta_g^{\beta}$

Simulated LHC Data

Visualizing Geometry in the Space of Events

t-Distributed Stochastic Neighbor Embedding (t-SNE) MNIST handwritten digits

Patrick Komiske – Improved Unfolding with Deep Learning

Visualizing Geometry in the Space of Events

t-Distributed Stochastic Neighbor Embedding (t-SNE) MNIST handwritten digits

Patrick Komiske – Improved Unfolding with Deep Learning

[PTK, Metodiev, Thaler, <u>PRL 2019]</u>

Gray contours represent the density of jets Each circle is a particular W jet

Visualizing Geometry in CMS Open Data

Example jets sprinkled throughout

[PTK, Mastandrea, Metodiev, Naik, Thaler, PRD 2019; code and datasets at energyflow.network]

45

Visualizing Geometry in CMS Open Data

Example jets sprinkled throughout

[PTK, Mastandrea, Metodiev, Naik, Thaler, PRD 2019; code and datasets at energyflow.network]

25 most representative jets ("medoids") Size is proportional to number of jets associated to that medoid

Correlation dimension: how does the # of elements within a ball of size Q change? dim $\simeq 1$ dim $\simeq 2$ dim $\simeq 0$ dim $\rightarrow 0$ $N_{\text{neigh.}}(Q) \propto Q^{\dim} \implies \dim(Q) = Q \frac{d}{dQ} \ln N_{\text{neigh.}}(Q)$ Correlation dimension lessons:

Decays are "constant" dim. at low Q

$$\dim(Q) = Q \frac{\partial}{\partial Q} \ln \sum_{i} \sum_{j} \Theta(\text{EMD}(\mathcal{E}_{i}, \mathcal{E}'_{j}) < Q)$$

[Grassberger, Procaccia, PRL 1983; PTK, Metodiev, Thaler, PRL 2019]

*Preliminary LL calculation for QG jets in backup

Correlation dimension: how does the # of elements within a ball of size Q change?

Decays are "constant" dim. at low QComplexity hierarchy: QCD < W < Top Fragmentation increases dim. at smaller scales

$$\dim(Q) = Q \frac{\partial}{\partial Q} \ln \sum_{i} \sum_{j} \Theta(\text{EMD}(\mathcal{E}_{i}, \mathcal{E}'_{j}) < Q)$$

[Grassberger, Procaccia, <u>PRL 1983</u>; PTK, Metodiev, Thaler, <u>PRL 2019</u>]

*Preliminary LL calculation for QG jets in backup

Correlation dimension: how does the # of elements within a ball of size Q change?

Decays are "constant" dim. at low QComplexity hierarchy: QCD < W < Top Fragmentation increases dim. at smaller scales Hadronization important around 20-30 GeV

Patrick Komiske – Improved Unfolding with Deep Learning

*Preliminary LL calculation for QG jets in backup

$$\dim(Q) = Q \frac{\partial}{\partial Q} \ln \sum_{i} \sum_{j} \Theta(\text{EMD}(\mathcal{E}_{i}, \mathcal{E}'_{j}) < Q)$$

[Grassberger, Procaccia, <u>PRL 1983</u>; PTK, Metodiev, Thaler, <u>PRL 2019</u>]

Patrick Komiske – Improved Unfolding with Deep Learning

*Preliminary LL calculation for QG jets in backup

Quark and Gluon Correlation Dimensions

Leading log (single emission) calculation:

$$\dim(Q) = Q \frac{\partial}{\partial Q} \ln \sum_{i} \sum_{j} \Theta(\text{EMD}(\mathcal{E}_{i}, \mathcal{E}'_{j}) < Q)$$

[PTK, Metodiev, Thaler, to appear soon]

Energy-Energy Correlators – Projection to Longest Side

Integrate out shape dependence but keep overall size dependence

$$\frac{d\Sigma[N]}{dx_L} = \sum_{n} \sum_{1 \le i_1 \le \dots \le i_N \le n} \int d\sigma_n \, \frac{E_{i_1} \cdots E_{i_N}}{Q^N} \delta(x_L - \max_{1 \le j < k \le N} \{\theta_{i_j i_k}\})$$

[PTK, Moult, Thaler, Zhu, to appear soon]

51

Energy-Energy Correlators – Projection to Longest Side

$$\frac{d\Sigma[N]}{dx_L} = \sum_{n} \sum_{1 \le i_1 \le \dots \le i_N \le n} \int d\sigma_n \, \frac{E_{i_1} \cdots E_{i_N}}{Q^N} \delta(x_L - \max_{1 \le j < k \le N} \{\theta_{i_j i_k}\})$$

Integrate out shape dependence but keep overall size dependence

5 I

Energy-Energy Correlators – Projection to Longest Side

$$\frac{d\Sigma[N]}{dx_L} = \sum_{n} \sum_{1 \le i_1 \le \dots \le i_N \le n} \int$$

Integrate out shape dependence but keep overall size dependence $\int d\sigma_n \, \frac{E_{i_1} \cdots E_{i_N}}{Q^N} \delta(x_L - \max_{1 \le j < k \le N} \{\theta_{i_j i_k}\})$ **EEEC/EEC** Ratio MOD MOD H H CMS 2011 Open Data PRELIMINARY ╋ ╋ CMS 2011 Open Data PRELIMINARY + + CMS 2011 Simulation CMS 2011 Simulation [dn]**Pythia 6** Generation -- Pythia 6 Generation tion $\Delta R = 0.5$ AK5 Jets, $|\eta^{\text{jet}}| < 1.9$ AK5 Jets, $|\eta^{\text{jet}}| < 1.9$ EEEC/EEC Ratio 1 7 $p_T^{\text{jet}} \in [375, 425] \text{ GeV}$ $p_T^{\text{jet}} \in [375, 425] \text{ GeV}$ $\overline{CHS}, p_T^{PFC} > 1 \text{ GeV}$ CHS, $p_{T}^{\rm PFC} > 1 \,\,{\rm GeV}$ $\frac{2}{2}$ 10^{-2} N = 2 10^{-} 10^{-} (Nor 10^{-} errors only Stat. tat. errors on 10^{-2} 10^{-1} 10^{-4} 10^{-3} 10^{-1} 10^{-3} 10^{-2} ΔR $\Delta R_{\rm max}$ MOD LL prediction of ratio H H CMS 2011 Open Data PRELIMINARY CMS 2011 Simulation -- Pythia 6 Generation 1.5 $\Delta R = 0.5$ **PRELIMINARY** AK5 Jets, $|\eta^{\text{jet}}| < 1.9$ 1.4 $p_T^{\text{jet}} \in [375, 425] \text{ GeV}$ quark CHS, $p_T^{\rm PFC} > 1 \,\,{\rm GeV}$ 10^{-2} gluon N = 3 \bigcirc ^ρ^μ_θ^μ_η 1.2 alized) EEE 10^{-4} L, P_T =400GeV 1.1 10^{-} (Norm)EEEC/EEC 1.0 10^{-} 0.9 Arbitrary normalization Stat. errors only 0.001 0.010 0.100 10^{-4} 10^{-1} 10^{-2} 10^{-4} 10^{-3} 10^{0} $\Delta \theta_L$ $\Delta R_{\rm max}$

EEEC – Full Shape Dependence

For $x_L \sim 0.01$

Patrick Komiske – Improved Unfolding with Deep Learning

[PTK, Moult, Thaler, Zhu, to appear soon]

EEEC – Full Shape Dependence

Patrick Komiske – Improved Unfolding with Deep Learning

гь

[PTK, Moult, Thaler, Zhu, to appear soon]

