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Overview

Jet Images and Neural Networks
Quark/Gluon Discrimination
ATLAS Simulation
Towards Learning with Data

Perspective on deep learning:
Deep learning is an incredible tool that HEP should explore (it’s 2017!)
There are obvious limitations (what is it learning?) so more work is
needed
Goal of this work is to demonstrate a use case for deep learning and
inspire further studies
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Jet Images

Jet Image Basics

Simple idea: treat calorimeter towers as pixels in an image with
intensity given by the pT

History:
Pumplin (1991): uses jet images to construct powerful single observables
for q/g discrimination (e.g. Nf = min # of pixels needed to account for
f% of the pT )
Cogan, Kagan, Strauss, Schwartzman (2015): applies Fisher Linear
Discriminant (FLD) to jet images, studies W vs. QCD background
Almeida, Backovic, Cliche, Lee, Perelstein (2015): jet images for top vs.
QCD
Oliveira, Kagan, Mackey, Nachman, Schwartzman (2015): W vs. QCD
with jet images and Deep Neural Networks (DNN)
PTK, Metodiev, Schwartz (2016): light quark vs. gluon with jet images
and DNNs
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Jet Images

Jet Image Example - Average Quark and Average Gluon

Gluons radiate proportional to
CA = 3, quarks radiate
proportional to CF = 4/3
Gluon jets fatter than quarks for
given energy bin
Image details:

33x33 pixels
0.8x0.8 in (η, φ) space
Resolution of 0.024x0.024
(comparable to ECAL)
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(Deep) Neural Networks

Neural Network Basics

Neural Network (NN) = arbitrary function approximator
Lönnblad, Peterson, Rögnvaldsson (1990): applied small NN to quark
vs. gluon problem (inferior to Pumplin’s N90 approach at the time)
Recent advances make more sophisticated (deep) NNs possible -
hardware (GPUs), architecture design (convolutions), activation
functions (ReLU), accessibility (Keras)
Two key choices:

Choice of representation of the jet

−→ jet images

Other choices: four-vectors [Louppe, Cho, Becot, Cranmer (2017)],
N-subjettiness [Datta, Larkoski (2017)], ECF(G)s, angularities

Choice of analysis of that representation

−→ deep convolutional NNs

Other choices: Fisher linear discriminant, boosted decision tree (BDT),
shallow/dense NNs
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(Deep) Neural Networks

Convolutional Neural Networks

Standard network architecture
for modern image recognition
Filters are convolved with
previous layer to produce output
Reasons for use:

Translation invariance
Efficient computation

Different filters are used for
detecting different “features”
Deeper layers correspond to
higher level features
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(Deep) Neural Networks

Additional Information – Multi-Channel Jet Images

Using all available information should maximize network performance
In analogy with an RGB image, additional jet image channels can be
thought of as different “colors”
Gallicchio, Schwartz (2012) argue there are essentially two kinds of
observables for q/g discrimination, “counting” and “shape”
Traditional jet image contains geometric information about energy flow,
supplement with some count observable
Our choice (non-canonical):

Channel 1: charged pT

Channel 2: neutral pT

Channel 3: charged particle multiplicity
Tried an 18-channel image with pT and charged counts for each type of
particle appearing – learning too difficult to merit this approach initially
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(Deep) Neural Networks

Network Architecture
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Results

ROC Curves
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Results

Additional Studies

Does the multi-channel approach
work?
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Has the network learned
common observables?

NN knows N95

CPM boosts perf. at high pT
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Results

Monte Carlo Comparison

Train/test with Pythia/Herwig
NN output defines an observable
Output has interpretation as a
confidence
Quarks appear similar, gluons
not so much

0.2 0.3 0.4 0.5 0.6 0.7 0.8

CNN Quark Output

A
rb

it
ra

ry

Pythia Gluons

Pythia Quarks

Herwig Gluons

Herwig Quarks

ROC curve independent of MC
used to train (working points
different)
Herwig trained model tested on
Pythia images matches
performance of all-Pythia setup

0.0 0.2 0.4 0.6 0.8 1.0

Quark Jet Efficiency

0.0

0.2

0.4

0.6

0.8

1.0

G
lu

o
n
 J
e
t 

R
e
je

ct
io

n

Pythia CNN on Pythia Color Images

Herwig CNN on Pythia Color Images

Pythia CNN on Herwig Color Images

Herwig CNN on Herwig Color Images

Patrick T. Komiske (MIT) Q/G Deep Learning September 8, 2017 11 / 18



Experimental Implementation

ATLAS Simulation

ATLAS has investigated jet images in simulation
Average Topocluster Images are shown below

Gluons QuarksDifference
ATL-PHYS-PUB-2017-017
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Experimental Implementation

ATLAS Simulation Results

ATL-PHYS-PUB-2017-017
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Experimental Implementation

ATLAS Monte Carlo Comparison

Closure property holds well for Pythia and Sherpa (left)
Training on Pythia vs. Herwig give slightly different results but trend
still holds that test sample is the dominant effect (right)

ATL-PHYS-PUB-2017-017
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Towards Learning with Data

Weakly Supervision - Learning from Label Proportions
(LLP)

Introduced by Dery, Nachman, Rubbo, Schwartzman (2017)
Suppose we know only data fractions instead of sample ground truth

Change loss function to fweak-loss '
∣∣∣∣∣

N∑
i=1

model(xi)
N

− y
∣∣∣∣∣, where y is

batch fraction
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Towards Learning with Data

Classification Without Labels (CWoLa)

Metodiev, Nachman, Thaler (2017)
Pretend that mixed samples are pure samples and train away
Loss function is the same as in strong supervision (categorical
crossentropy)
Smoothly interpolates to strong learning in the case of pure samples
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Towards Learning with Data

Performance

Performance of LLP and CWoLa
essentially the same as strong
supervision, even for different
sample purities!
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Conclusions

Concluding Remarks

Conclusions:
Jet images and deep CNNs can be successfully used to discriminate
quarks and gluons
Multi-channel jet image approach yields additional discrimination power
Interesting closure test shows that training is picking up on universal
features between MCs
ATLAS has implemented these techniques in simulation

Further work:
Opening the box – need to understand what the network is learning
Optimizing network architecture – choices made here are reasonable but
not very optimized
Learning directly from data – promising methods are being developed to
make this a reality in the very near future
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Backup Slides

Backup Slides
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Backup Slides

Simulation Details

Pythia 8.219, Herwig 7.0
Train on 180k images, validate on 10k, test on 10k
√
s = 13 TeV
|η| < 2.5
R = 0.4 anti-kt jets
10% wide pT bins
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Backup Slides

Fisher Linear Discriminant
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Backup Slides

Shallow NN Filters
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