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Overview

Jet Images and Neural Networks
Quark/Gluon Discrimination
ATLAS Simulation

Towards Learning with Data

Perspective on deep learning:
m Deep learning is an incredible tool that HEP should explore (it's 2017!)
m There are obvious limitations (what is it learning?) so more work is
needed
m Goal of this work is to demonstrate a use case for deep learning and
inspire further studies
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Jet Images

Jet Image Basics

m Simple idea: treat calorimeter towers as pixels in an image with
intensity given by the pr

m History:

Pumplin (1991): uses jet images to construct powerful single observables
for q/g discrimination (e.g. Ny = min # of pixels needed to account for
f% of the pT)

Cogan, Kagan, Strauss, Schwartzman (2015): applies Fisher Linear
Discriminant (FLD) to jet images, studies W vs. QCD background
Almeida, Backovic, Cliche, Lee, Perelstein (2015): jet images for top vs.
QCD

Oliveira, Kagan, Mackey, Nachman, Schwartzman (2015): W vs. QCD
with jet images and Deep Neural Networks (DNN)

PTK, Metodiev, Schwartz (2016): light quark vs. gluon with jet images
and DNNs
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Jet Images

Jet Image Example - Average Quark and Average Gluon

m Gluons radiate proportional to
C'a = 3, quarks radiate
proportional to Cr = 4/3

m Gluon jets fatter than quarks for
given energy bin

m Image details:

m 33x33 pixels

m 0.8x0.8 in (1, ®) space

m Resolution of 0.024x0.024
(comparable to ECAL)
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(Deep) Neural Networks

Neural Network Basics

m Neural Network (NN) = arbitrary function approximator

m Lonnblad, Peterson, Régnvaldsson (1990): applied small NN to quark
vs. gluon problem (inferior to Pumplin's Ngo approach at the time)

m Recent advances make more sophisticated (deep) NNs possible -
hardware (GPUs), architecture design (convolutions), activation
functions (ReLU), accessibility (Keras)

m Two key choices:

m Choice of representation of the jet
m Other choices: four-vectors [Louppe, Cho, Becot, Cranmer (2017)],
N-subjettiness [Datta, Larkoski (2017)], ECF(G)s, angularities
m Choice of analysis of that representation
m Other choices: Fisher linear discriminant, boosted decision tree (BDT),
shallow/dense NNs
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(Deep) Neural Networks

Neural Network Basics

m Neural Network (NN) = arbitrary function approximator

m Lonnblad, Peterson, Régnvaldsson (1990): applied small NN to quark
vs. gluon problem (inferior to Pumplin's Ngo approach at the time)

m Recent advances make more sophisticated (deep) NNs possible -
hardware (GPUs), architecture design (convolutions), activation
functions (ReLU), accessibility (Keras)

m Two key choices:

m Choice of representation of the jet — jet images
m Other choices: four-vectors [Louppe, Cho, Becot, Cranmer (2017)],
N-subjettiness [Datta, Larkoski (2017)], ECF(G)s, angularities
m Choice of analysis of that representation — deep convolutional NNs

m Other choices: Fisher linear discriminant, boosted decision tree (BDT),
shallow/dense NNs
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(Deep) Neural Networks

Convolutional Neural Networks

m Standard network architecture
for modern image recognition

m Filters are convolved with

previous layer to produce output

m Reasons for use:

m Translation invariance
m Efficient computation

m Different filters are used for

detecting different “features”

m Deeper layers correspond to
higher level features
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(Deep) Neural Networks

Additional Information — Multi-Channel Jet Images

m Using all available information should maximize network performance

m In analogy with an RGB image, additional jet image channels can be
thought of as different “colors”

m Gallicchio, Schwartz (2012) argue there are essentially two kinds of
observables for q/g discrimination, “counting” and “shape”

m Traditional jet image contains geometric information about energy flow,
supplement with some count observable

m Our choice (non-canonical):
m Channel 1: charged pr
m Channel 2: neutral pp
m Channel 3: charged particle multiplicity

Tried an 18-channel image with p7 and charged counts for each type of

particle appearing — learning too difficult to merit this approach initially
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Deep) Neural Networks

Network Architecture

pre-process

dense layer
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ROC Curves
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Additional Studies

m Does the multi-channel approach

m Has the network learned

common observables?

work?
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Monte Carlo Comparison

m ROC curve independent of MC
used to train (working points
different)

m Herwig trained model tested on

Pythia images matches

performance of all-Pythia setup

Pythia CNN on Pythia Color Images
Herwig CNN on Pythia Color Images
Pythia CNN on Herwig Color Images
Herwig CNN on Herwig Color Images

m Train/test with Pythia/Herwig
m NN output defines an observable
m Qutput has interpretation as a
confidence
m Quarks appear similar, gluons
not so much
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ATLAS Simulation

m ATLAS has investigated jet images in simulation

m Average Topocluster Images are shown below
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ATLAS Simulation Results
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ATLAS Monte Carlo Comparison

m Closure property holds well for Pythia and Sherpa (left)

m Training on Pythia vs. Herwig give slightly different results but trend
still holds that test sample is the dominant effect (right)
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Towards Learning with Data

Weakly Supervision - Learning from Label Proportions
(LLP)

m Introduced by Dery, Nachman, Rubbo, Schwartzman (2017)

m Suppose we know only data fractions instead of sample ground truth

N
model(x;
m Change loss function to fueak-loss = Z N(ml) —y|, where y is

i=1
batch fraction
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Classification Without Labels (CWolLa)

Metodiev, Nachman, Thaler (2017)

Pretend that mixed samples are pure samples and train away

m Loss function is the same as in strong supervision (categorical
crossentropy)

Smoothly interpolates to strong learning in the case of pure samples
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Towards Learning with Data

Performance

m Performance of LLP and CWolLa
essentially the same as strong
supervision, even for different

sample purities!
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Conclusions

Concluding Remarks

m Conclusions:

m Jet images and deep CNNs can be successfully used to discriminate
quarks and gluons

m Multi-channel jet image approach yields additional discrimination power

m Interesting closure test shows that training is picking up on universal
features between MCs

m ATLAS has implemented these techniques in simulation

m Further work:

m Opening the box — need to understand what the network is learning

m Optimizing network architecture — choices made here are reasonable but
not very optimized

m Learning directly from data — promising methods are being developed to
make this a reality in the very near future
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Backup Slides

Simulation Details

Pythia 8.219, Herwig 7.0

Train on 180k images, validate on 10k, test on 10k
Vs =13TeV

In| < 2.5

R = 0.4 anti-k; jets

10% wide pr bins
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Fisher Linear Discriminant

Fisher's Linear Discriminant
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Shallow NN Filters
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