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Feynman Diagrams vs. (pseudo)Reality Diagrams

Image from Sherpa
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Jets in Theory in Practice in Theory in Practice.

e need to master: - . RN
‘/- Final state radiation . i) |
L . t, studied,
Soft radiation from other jets rzsf". | Stu |||e q g
. . and fairly well unaerstoo 1l
* Hadronization S in eter 1do IR,
* Single scale A o e S0
QCD i  LoeNLL
* Universal power corrections
* Shape-function models . i
J Initial state radiation N = S
. X ; X .4
» Soft radiation into jets understood :

* Collinear radiation understood with beam functions

eill, Moult]

on :pertubative effects?

Slide from overview talk by Matthew Schwartz at 2017 ML for Jets workshop at LBNL
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Jet Tasks I'll Talk About

Jet Tagging: How can we distinguish a quark jet vs.a gluon jet? A W jet vs.a QCD jet?

q%vs.g%

Pileup Mitigation: Can we decontaminate the jet radiation from soft, diffuse pileup?

Data vs. Simulation: Do we really need simulations to provide labeled training data? Or
are there ways to train algorithms directly on the (unlabeled) data?

Data __ Simulation

Vs, : c v

0.05 0.1 0.15
Track Width
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Machine Learning
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Visualistaion Reduction Elicitation Detection g

Advertising Popularity
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Learning Learning Weather
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I I ac h I n e Population
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REcOmMmSdEr Unsupervised Supervised

Systems
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Marketing

Market
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Customer

Segmentation L e a r n i n g

Estimating
life expectancy

Real-time decisions Game Al
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Machine Learning in High Energy Physics

PUMML
1707.08600

anti-k

0802.1189

LAGAN
1701.05927

EFPs & IRC-safe CaloGAN
Observbales 1712.10321 Clustering CIA

1712.07124

UEMML? STTe[(=E o]y :
Generation

Autoencoders?

PCA?
Unsupervised

Learning Dimensionality

Reduction
1407.5675

Machine e
1603.09349 [
1704.08249 Classification Le a r n I n g Topic
Modeling

Top Tagging EFPs and
1501.05968 Linear Class.

1701.08784 1712.07124

Supervised
Learning

1211.7038 Quark/Gluon
Tagging

W Tagging

Jet Images RNNs

1707.08966 and CNNs
Jet Topics

1511.05190 1702.00748
@ 1711.02633 o
Reinforcement
Learning

2 ? See 1709.04464 for a

more complete review
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Tradltlonal Approach

Machlne Learning Approach

Think about physics

A\ 4

Think about inputs

y

Design observables

Design model

—

Run simulations

Take best observables

Algorithm learns
best observables

Use on data
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Quark vs. Gluon Jet Tagging

[PTK, E.M. Metodiev, M.D. Schwartz, 1612.01551]

For many BSM processes:
Quark = Signal
Gluon = Background

Quark color charge: Cr = 4/3
Gluon color charge: C4 = 3

anti-k1

kT

EFPs & IRC-safe
Observbales

CaloGAN

Clustering CIA

UIVVEE Regression .
Generation

Autoencoders?

PCA?
Unsupervised
Dimensionality

i Learnin .
Quark/Gluon SuperVISed g Reduction

Tagging Learnin .
~ Machine
Classification Le a rn i n g Topic

EFPs and Modeling
Linear Class

Top Tagging

Jet Images RNNs
and CNNs

Jet Topics

Reinforcement

Learning

——— Gluons radiate more than quarks and are “wider”

Inherently difficult problem for conventional taggers (both are one-pronged jets)

Machine learning to the rescue!
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Representing a Jet %

Set of Particles

Jet Images Clustering Trees Energy Flow
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Jet Images

Quarks
Center on patch of the pseudorapidity- . : )
azimuth plane containing a jet
- &
Treat energy/transverse momentum
deposits in calorimeter as pixel intensities
Gluons

Additional input channels possible:
Red: py of charged particles _
Green: pr of neutral particles " . s
Blue: charged particle multiplicity

Jet images are sparse Gluons wider than quarks
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Convolutional Net for QG
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[Ty
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33 x 33 image = 1089 inputs
2Rx2R=0.8x0.8in (v, ®)

......
A

pre-process

dense layer

quark jet

(m
N

gluon jet
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Quantifying a Classifier

Receiver Operating Characteristic (ROC) curve:
True negative rate of the classifier at different true positive rates

ROC curve for Jet Mass
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Quark Signal Efficiency
Figure from 1211.7038

Area Under the ROC Curve (AUC) captures the classifier performance in a number.
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Classification Performance

Gluon Jet Rejection

Significance Improvement
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ATLAS

EXPERIMENT

HL-LHC tt event in ATLAS ITK
at <u>=200



Pileup Mitigation with Machine Learning (PUMML)

[PTK, E.M. Metodiev, B. Nachman, M.D. Schwartz, 1707.08600]

Pileup comes from additional
interaction vertices

Soft and uniform (on average) noise

Want to remove pileup to be sensitive
to high energy effects

PUMML is first application of MML
regression in particle physics

CMS event with 86 pileup vertices

EFPs & IRC-safe
Observbales

CaloGAN
Clustering CIA

Regression
- Generation

Ajencoders?

PCA?
Unsupervised

q H Dimensionality
Quark/Gluon Superwsed Leammg Reduction
Tagging Learning ’ M h .

Classification Le arn | N g Topic

EFPs and Modeling
Linear Class

W Tagging
Lasso?

Top Tagging

Jet Images
and CNNs

RNNs
Jet Topics

Reinforcement

Learning

CMS Experiment at the LHC, CERN
Data recorded: 2016-Sep-08 08:30:28.497920 GMT

Run_/ Event+LS: 280827 / 85717 ~\\ {
\¥ \ AN
-, \\

7/ )\

A
‘L\",'
AN
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i
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4 7 ;/ /// /4 ‘ / ) 1 \
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Pileup Mitigation with Machine Learning (PUMML)

Total neutral

Leading vertex neutral

Inputs to NN e

10 filters x2
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Average PUMML Jet Image Inputs

Lower neutral
resolution

Higher charged
resolution

Azimuthal Angle ¢

Azimuthal Angle ¢

Neutral Total pr

Pseudorapidity n

Charged Leading Vertex pr

Pseudorapidity n

Azimuthal Angle ¢

-
K
=)
&
<
©
&
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3
£
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Charged Pileup pr

Pseudorapidity n

Pileup is uniform

PUMML tries to
predict this
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Comparison of Pileup Removal Methods

PUMML compares favorably to other existing pileup mitigation methods!
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Back to Observables

TRUST ME

'M AN EXPERT

Angularities
Jet mass g

Subjet Count

Multiplicit
N-subjettiness LY

Geometric Moments

Energy Correlation Functions



What is IRC Safety!?
Infrared (IR) safety — observable is unchanged under addition of a soft particle:

S({p, - oy}) = lim S({py, .. Py €DM41)), VDh4s

e—0

Collinear (C) safety — observable is unchanged under collinear splitting of a particle:

S({p1, - o)) = lim S({pf’ .. A = Dpyp, Apy}), VA€ [0,1]

e—0

A necessary and sufficient condition for soft/collinear divergences of a QFT
to cancel at each order in perturbation theory (KLN theorem)

Divergences can be seen in QCD splitting function:

2a. d0dz  C,=Cp=4/3
m Z Cy=C,=3

IRC-safe observables probe high energy structure while being insensitive to low
energy modifications
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Energy Flow

N\
N\

At the heart is the Energy Flow Operator:

Energy Flow to infinity

vy v

c(n,v) = gl_)rglo? TOUt, vt?)

in the 71 direction
at velocity v

[N. Sveshnikov and F. Tkachov, hep-ph/9512370]
[V. Mateu, |.VV. Stewart, and |. Thaler, arXiv:1209.3781]

Progress has been made in computing correlations of (7, v) in conformal field theory

[D. Hofman and ]. Maldecena, 0803.1467]

IRC-safe observables are built out of energy correlators:

[F. Tkachov, hep-ph/9601308]

Rigid energy structure  Arbitrary angular function f

Cr = 2 z 2 E; Ej, - Ele(pl11° ;pLN)

l1—1 12—1
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Energy FIOW POI)’nomiaIS (EFP5) [PTK, E.M. Metodiev, |. Thaler, 1712.07124]

Energy Fraction Pairwise Angular Distance
" e
_ E; 205D iy \2
ete™: Zi = / , QU = (—l JM)
Yk Ek E(Ej
pTj 2 2 -
ic: z. = So= “. “. )2
\ | Hadronic: z; = S T 0;; = (Ayu + Ac/)l])

‘\ M
In equations: EFPG = z z 2 Zi Zi, " Ziy _[ 0;i,

A

multlgraph l1—1 lz—l IN—= 1 (k,l)EG

| | | | |

| [ | I
In words: Correlator of Energies and Angles

Sum over all N-tuples of Product of the N One 6;, ;, for each

particle in the event energy fractions edgein (k,1) € G
In pictures:

‘. — Zij — Qikil
J k [
3 M M M M
1 2 2
(e'g') — . Zl]_ZLZZl3Zl4 Qiliz Qizig 9i3l40L2L4

(any index labelling works)
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Multigraph/EFP Correspondence

Multigraph «—— EFP

M M M M M
B 2
B Z Z Z Z Z Ziy ZigRigRiy Zig H'Iﬁl'i‘z 9112'133 Hil'ili 01'11'4 9":1 i5 0““’)
11=112=143=114=115=1

B — 7
J

N  Number of vertices «—— N-particle correlator

d Number of edges <+— Degree of angular monomial
Treewidth + | +<— Optimal VE Complexity
Connected «— Prime
Disconnected +<—— Composite
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EFPs linearly span IRC-safe observables

IRC-safe Observable

Energy Expansion: Expand/approximate the observable in polynomials of the particle energies
IR safety: Observable unchanged by addition of infinitesimally soft particle
C safety: Observable unchanged by the collinear splitting of a particle
Relabeling Symmetry: All ways of indexing particles are equivalent

See also: F. Tkachov, hep-ph/9601308
N. Sveshnikov and F. Tkachov, hep-ph/9512370

l New, direct argument from IRC safety

Energy correlators linearly span IRC-safe observables

Angular Expansion: Expansion/approximation of angular part of correlators in pairwise angular distances
Analyze: [dentify the unique analytic structures that emerge as non-isomorphic multigraphs/EFPs

M. Hogervorst et al. arXiv:1409.158 |
B. Henning et al. arXiv:1706.08520

l Similar expansions & emergent multigraphs in:

EFPs linearly span/approximate IRC-safe observables!
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Degree Connected Multigraphs

Organization of the basis [

EFPs linearly span all IRC-safe " O /\

observables!
= AAAL

EFPs are truncated by angular degree d, @
the order of the angular expansion. /\ é /\ <> /I\

& A. o™
Online Encyclopedia of Integer Sequences (OEIS)

A050535 # of multigraphs with d edges @) é A /\ /\ @ N AN
# of EFPs of degree d K\XZ&A{\QK\{\QA

A076864 # of connected multigraphs with d edges | ¢=5

# of prime EFPs of degree d X%W}?T{n\mﬁm
l i L1

Exactly 1000 EFPs up to degree d=7!
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Jet Substructure Observables as EFPs

Scaled Jet Mass: z Z z; 7; (cosh Ay; ;. — cos Ay ;)
pT] 1,1_1 l2—1
Jet Angularities: N © = 3 >
g : )L(Ol):zzigia A6 = -3 +=
i
[C. Berger, T. Kucs, and G. Sterman, hep-ph/0303051]
1(4) _ [S. Ellis, et al., arXiv:10010014]
- [A. Larkoski, |. Thaler, and W. Waalewijn, arXiv:1408.3122]
. . . M
Energy Correlation Functions (ECFs): B _ Z Z Z B of
N l1 lZ I:](il
i1=1i,=1 iy=1 k<lE{1,---,N}

[A. Larkoski, G. Salam, and ]. Thaler, arXiv:1305.0007]

e = P = elf) =

41
and many more...



Linear Regression and IRC-safety

1.0 1

I
%

<
=N

Corr. Coef. 5" — 95" Percentile
I
()

0.0

m .
p—]: IRC safe. No Taylor expansion due to square root.
T

T,: IRC safe. Algorithmically defined.
T,1: Sudakov safe. Safe for 2-prong jets and higher.
T3,: Sudakov safe. Safe for 3-prong jets and higher.

Multiplicity: IRC unsafe.

=
=
f

QCD Jets (I prong) W Jets (2 prong)
W 101
————A--—TATTTT
k- TATTTE 2
'3g - 208
- <
-~ S
| § =
,-—“’. 2 0.6 1
- |
F 4a = -
-7 —— my/pry S .——”. —— my/prJ
- _--n o— \e=1/2) < 0.4 —0— \a=1/2)
»----R o 3 N
° 7_2(371) O ° /_;L])
B=1 = B=1
1 QcD Jets -m- =Y S 0ad W Tets - 7=
Pythia 8.226, \/s = 13 TeV —m- =D Pythia 8.226, \/5 = 13 TeV - =D
EFP 8 = 1, anti-ky R=0.8 32 EFP 8 = 1, anti-kr R=0.8 '32
500 CeV < pr < 550 GeV —&k- Mult. 500 GeV < pr < 550 GeV —&=- Mult.
T T T T 0.0 T T T T T T
2 3 4 5 6 7 2 3 4 5 6 7
Max Degree of EFPs Max Degree of EFPs

Expected to be IRC safe = Solid.
Expected to be IRC unsafe = Dashed.

[A. Larkoski, S. Marzani, and |. Thaler, 1502.01719]

Corr. Coef. 5" — 95t Percentile

Top Jets (3 prong)

1.0
0.8 4
0.6 1
—— m;/pry
0.4 1 —— \(a=1/2)
o (F=D
T2
p=1
0.2 4 Top Jets = 7—;1 )
Pythia 8.226, /s = 13 TeV (B=1)
EFP § =1, anti-kr R=0.8 = 7
500 GeV < pr < 550 GeV —&k=- Mult.
0.0 T T T T T T
2 3 4 5 6 7
Max Degree of EFPs
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Jet Tagging Comparison

ROC curves for W jet vs. QCD jet tagging

103 5

S 402

< =

g 10 ]

o0

i

T

8 W vs. QCD

o Pythia 8.226, /s = 13 TeV

@ R = 0.8, pr € [500,550] GeV

H —

% 100 - EFP 8=05,d<7

— { =—— EFPs, Lin. = Nsubs, Lin.
! EFPs, DNN Nsubs, DNN
il gray CNN ~ «ree- color CNN

107k T T T T

0.0 0.2 0.4 0.6 0.8 1.0

W Jet Efficiency

(Linear classification with EFPs) ~ (MML) for efficiency > 0.5!

N-subjettiness: 1011.2268,  N-subjettiness basis: 1704.08249, NN Review: |709.04464




Jet Tagging Comparison

ROC curves for quark vs. gluon tagging and top tagging

10° 5 10° 5
2 Q
S 10% S 107
2 o ;
= =
< 10 Z 10
§ 1 Quark vs. Gluon 8 Top vs. QCD
6 Pythia 8.226, /s = 13 TeV @ Pythia 8.226, /s = 13 TeV
2 R =04, pr € [500,550] GeV o R = 0.8, pr € [500,550] GeV
5 ol EFPB=05d<7 3 o| EFPB=05d<7
= 10 F =z 10 3
=4 1 — EFPs, Lin. = Nsubs, Lin. = - EFPs, Lin. = Nsubs, Lin.
] EFPs, DNN Nsubs, DNN EFPs, DNN Nsubs, DNN
""" gray CNN sesany gplor ONN =e=eo gray CNN »+eso color CNN
1()_1 I 1 1 1 10_1 1 1 1 1
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Quark Jet Efficiency

Top Jet Efficiency

(Linear classification with EFPs) ~ (MML) for efficiency > 0.5!
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Simulation vs. Data

EFPs & IRC-safe
Observbales

Clustering

PSVVER Regression G i
eneration

In physics, we usually don’t have access ' Unsupervised
.. Dimensionality
to labelled training data.

Supervised Learning Reduction
Learning

Machine

Learning

Modeling

If we knew which jets were quark and 5
gluon jets... we wouldn’t need a tagger!

Reinforcement
Learning

In collider physics, we usually rely on (imperfect) simulations to provide labelled examples.

DELPHES

fast simulation

Modern machine learning exploits subtle correlations.The simulations do not fully capture
all of the complex correlations. Is this a fundamental obstacle to all ML in Physics?
46



Simulation vs. Data

Quark/Gluon Discrimination

Using two features:Width and Number of tracks.
Signal (Q) vs. Background (G) likelihood ratio

[ATLAS Collaboration, arXiv: 1405.6583]
Simulation
f T T T T | T T T T I 13 T T T I T
£18

|IIII[II|III|

i H T I
0 0.05 0.1 0.15
Track Width

q/(9+g)

L
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18F L
16F 0.9
141 0.8
- 0.7
12
0.6
10
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0.15
Track Width

0 0.05 0.1

Important differences between simulation and data even for simple observables! 47
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B - 4
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Traditional Approach Machine Learning Approach

Think about physics Think about inputs
Design observables Design model
\/ =<

S
\
—————— ) (R -
Run simulations I Train on data?
7 -~
¥

Algorithm learns

Take best observables
best observables

Use on data
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“Physics ML”

This is relatively new territory for Machine Learning.

In “Usual ML”: Automate a task that is possible but time consuming for humans
(e.g. cat jet vs dog jet).

VS.

In “Physics ML”: Automate a task that is impossible for humans (e.g. quark jet vs gluon jet)

VS.



Mixed Samples

Data does not have pure labels, but does have mixed samples!
Some caveats apply. See e.g. P. Gras, et al., arXiv: 1704.03878

Mixed Sample 1 Mixed Sample 2

pMa(x) = faps(x) + (1 — fg) pp(x)

Fraction where ALL Jets are Quark Fraction where ALL Jets are Gluon
+1j JW+2)
1.000 L;—l' — ZIWEZ) o 1.000 n b+
7w, —3 B
0.500 : % ' 0500+ o 3 *

0050F

0.005 - 0.005

0.001 . 1
1600 50 100 1600

Fractions of quark and gluon jets studied in detail in: RCIT
|. Gallicchio and M.D. Schwartz, arXiv: 1 104.1175

200 400 800 200 400 800
pr Cut on All Jets (GeV) pr Cut on All Jets (GeV)

Fraction where HARDEST Jet is Quark Fraction where SOFTEST Jet is Quark

% A
100% o 100% ZN\] fZ;/:
80% 0%

60%F o«

20%F o«

50 100 200 400 800 600 %% 100 20 20 80 1600
pr Cut on All Jets (GeV) pr Cut on All Jets (65@




Mixed Samples

Data does not have pure labels, but does have mixed samples!
Some caveats apply. See e.g. P. Gras, et al., arXiv: 1704.03878

Mixed Sample 1 Mixed Sample 2
{

®| ©®6
@@% Pu,(X) = faps(x) + (1 — fo) pp(x)
®| | ©

Sample Independence:The same signal and background in all the mixtures.
Different Purities: f, # f; for some a and b.

(Known Fractions):The fractions f, are known.



Weak Supervision

ML Umbrella term for any classification framework using partial label information.

Collection of supervision models.

Model References Description

Full-supervision [9.24.34,43] For each example, complete class information is provided.

Unsupervision [24] No class information is provided with the examples.

Semi-supervision (5] Part of the examples are provided fully supervised. The rest are unsupervised.

Positive-unlabeled [4,10,21,32] Part of the examples are provided fully supervised, all of them with the same categorization.
The rest are unsupervised.

Candidate labels [7.13,16] For each example, a set of class labels is provided. In this set, the class label(s) that compose
the real categorization of the example are included.

Probabilistic labels [18] For each example, the probability of belonging to each class label is provided. This probability
distribution is expected to assign high probability to the real label(s).

Incomplete [3.33,42] For each example, a subset of the labels that compose its real categorization is provided (SIML
or MIML, Table 1).

Noisy labels [2,44] For each example, complete class information is provided, although its correctness is not
guaranteed.

Crowd [30,40] For each example, many different non-expert annotators provide their (noisy) categorization.

Mutual label constraints [19,20,31] For each group of examples, an explicit relationship between their class labels is provided
(e.g., all the examples have the same categorization).

Candidate labeling vectors [22] For each group of examples, a set of labeling vectors (including the real one) is provided. A
labeling vector provides a class label for each examples of a group.

Label proportions [15,25,28] For each group of examples, the proportion of examples belonging to each class label is

provided.

J. Herndndez-Gonzdlez et al. / Pattern Recognition Letters 69 (2016) 49-55

No exact weak supervision framework for the physics (mixture) use-case.

An opportunity to develop new ML tools for the job!

52



Learning from Label Proportions (LLP) (LoLiProp)

[L. Dery, et al., arXiv: 1702.00414]

Mixed Sample 1

Try to match the signal fractions in aggregate

Mixed Sample 2
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Gluon Jet efficiency
o & |

0.1

1 U'Pl.:
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Q/G LLP with 3 inputs works

l { [
—— Fully supervised NN, AUC=0.79
—— Weakly supervised NN, AUC=0.79

n, AUC=0.76
w, AUC=0.78

f0, AUC=0.77

1 l |

Quark Jet efficiency
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‘ '.‘ ’ Classification Without Labels (CVWola, “koala™)

[E.M. Metodiev, B. Nachman, and |. Thaler, arXiv: 1708.02949]

[T. Cohen, M. Freytsis, and B. Ostdiek, arXiv: 1706.09451]

[PTK, E.M. Metodiev, B. Nachman, and M.D. Schwartz, arXiv: 1801.10158]

See also: [G. Blanchard, M. Flaska, G. Handy, S. Pozzi, and C. Scott, arXiv:1303.1208]

Mixed Sample 1

Mixed Sample 2

O®O®G
OOOO®G
OeO®®
OOO®G

©0000

0

Classifier

No label proportions needed during training!

Smoothly connected to the fully supervised case as f;, f, = 0,1

Note: Need small test sets with known signal fractions to determine the ROC.

Classify mixed samples from each other

Q/G WS with 5 inputs works

1.0
—=

.O f:’
(=2} oo
T T

Gluon Background Rejection
(=)
N
I

Dense Net
= w. CWoLa

Multiplicity

fl,fg =0.8,0.

2

ot pp— H —qq/gg
B Mess Pythia 8.183
Pr V5 =13 TeV
LHA mpy = 500 GeV
OO l l l l
0.0 0.2 0.4 0.6 0.8 1.0
Quark Signal Efficiency
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‘ ’.‘ ’ Classification Without Labels (CVWola, “koala™)

Why does CWola work!?

O®OO®O | | ©OGCOG
OPOPG | | @OG®G
OeeG®G | | ©OG®®
OPOOG | | ©@GGOG
®eeOG | | ©CCG®®

/

Classifier

Neyman-Pearson Lemma:
There is an optimal binary
classifier: the likelihood ratio.

ps(x)

Ls/p(x) = (%)

The mixed-sample likelihood ratio is related to the
signal/background likelihood ratio by:

Pm,  fibs + (1—-f1)ps _ fils/p + (1 — f1)

Lag m, = —% = = '
M1/Mz Pm, fops+ (A —f)pg  folsp + (1 —f3)

This is a monotonic rescaling of the signal/background
likelihood ratio!

Therefore Mixture | vs. Mixture 2 and Signal vs.
Background define the same classifier. They have the
same ROC curves.



[} ’ Learning to Classify from Impure Samples

\ [PTK, E.M. Metodiev, B. Nachman, and M.D. Schwartz, arXiv: 1801.10158]

CWola and LLP have been shown to work for simple architectures and small inputs.

Can these weak supervision methods be used for real deep learning applications in
collider physics? Are they ready for the big leagues?

To answer this question, we did our
quark/gluon tagging with jet images using only
mixtures of quarks and gluons — no labels.

pre-process

dense layer

’ WH: =

max-pooling

Short answer: ¥ CWola generalizes very well
LLP needs tuning, but it works

~ quark jet
s e

-

dodoooonbb

gluon jet

Potential to train on datal!

X3
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7
@‘.‘ ’ Purity and Number of Data

\

Two mixed samples: f;,1 — f;

OCIOICIONMRCICIOIONC,
OPOOG | | @OG®G
OGO | | ©CC®®
OPOPG | | @GCO®
®eCOG | | ©CCG®®

Purity/Data plot can characterize
tradeoffs in a weak learning method

CWola performs near full
supervision if the samples are

relatively pure.

LLP lags behind but still achieves
good classification performance.

o

|

better

AUC

0.87

0.86

0.85

0.84

0.83

0.82
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0.80

0.79

Full Supervision

/
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i

- /
/

=

’ ol

—— y* CWoLa

kT

® LLP

B

?‘ﬁﬁs 5

-1

- f1=0.1
— f1=0.2
—_— =03
— =04

I—”I-_—I"
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Number of Training Samples
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7
@'.‘ ¥ Batch Size and Training Time
\

2000
We explored hyperparameters, .
training times, and other lessons L 1750
el 056] G—E
from using the methods in practice. g| """
- - 1500
2l 0.85-
- 1250 =
0.84 1 g
& E
2 o - 1000 fo
Batch size : e 3
0.82 - "
As usual for CWola i
0.81 - 4 - 500
Need large batch size for LLP — — @ CWola - 250
Batch Size > 1000 / --- @ LLP
Na ()T?) T 1 1 T 1) T L) L )
1 4 128 256 512 1024 2048 4096 8192 16384
fLLp = t falN_ h(x) Batch Size
a 4i=1 ) ) .
time/epoch increases # of epochs increas
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Weak Supervision in Summary

We now have two candidate methods to train ML algorithms directly on jet data

Property

No need for fully-labeled samples
Compatible with any trainable model
No training modifications needed
Training does not need fractions
Smooth limit to full supervision
Works for > 2 mixed samples

Moral of this story: use CWola
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CWola Hunting!

[]. Collins, K. Howe, B. Nachman, 1805.02664]

Cool way to use CWola to incorporate
high-dimensional features in bump hunts

Process-agnostic, data-driven new physics
search strategy

Events / 100 GeV

10° l T T
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; | Slhp 11_.' "
107 - | region | I
4 R
107 ¢ "o-‘_* | ‘r*“O-L*_
*"J-;__.3.80" | -*“-..__
0} . R S| -
—a— o
9 o *T"‘~..1_._ ~24-.-2.ch : - “§*"‘~o
107 F T v recats 0 701 T TS hee
100 b e :o e e
'?‘T Sl I ! P —
------ I I
10 | e t
I s, |
~r o ] | -
10-1 L Sideband ! : | ]
I I I
1 1 1
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3500 4000

Signal Region Sideband NN selection, 0.2% i Truth signal
-'»j:? '.’:-.:S\
2 ) 4 .-u ::;'
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m,.
=3
g 10!
10! 10° 10! 10° 10! 10° 10! 10°
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Jet Tasks | Talked About

Jet Tagging: How can we distinguish a quark jet vs. a gluon jet? A W jet vs.a QCD jet?

. % VS. % Classification
) q g [PTK, E. Metodiev, M.D. Schwartz, 1612.01551]
ﬁ\ : [PTK, E. Metodiev, |. Thaler, 1712.07124]

Pileup Mitigation: Can we decontaminate the jet radiation from soft, diffuse pileup?

— \ Denoising

[PTK, E. Metodiev, B. Nachman, and M.D. Schwartz, 1707.086001]

Data vs. Simulation: Do we really need simulations to provide labeled training data? Or
are there ways to train algorithms directly on the (unlabeled) data?

Data

Simulation

Weak Supervision

ATLAS Simulation

VS.

[PTK, E. Metodiev, B. Nachman, and M.D. Schwartz, 1801.10158]
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Many Interesting ldeas Out There!

A wealth of new ways to directly access physics with machine learning methods!

Constraining EFT operators
JUNIPR ——

Energy Flow Analysis

Lund Plane Jet Images

lFDrr.Im.z

QCD, Lund image (In p¢), ps > 500GeV

1073

10-4

In(p¢, 2 AR12/GeV)

10-°

|n(R/AR12)

Our model at a single time step @

P; = P(not end) - P(parent | not end) - P(daughters | parent)

sample =y

h
e:d the7 ending ‘n‘:;:e parent | split the S
shower? parent parent S
\ [ / o

e

To use model as generator,
Q -

« Task specific networks
compute probabilities

» RNN stores global
jet substructure

[A. Andreassen, |. Feige, C. Frye, M.D. Schwartz, 1804.09720]

Slide from B. Nachman.

Even more waiting to be developed!
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Thank you!



Jet Mass Correlation Coefficient

Robustness of PUMML

Train and test on different amounts of pileup

1.00
.':.ll.. I
i_m o= | ]
0.98 1™ U‘o.'ll' lIllll=|'="'"'-.-'.--||r-nin. “ua
© [ T T T
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0.96 - ! o®® n "unf mmEy W
| | EE "m
i nanen |
0.94 - o
| L l
I [ 1Y ® o
°
I B PUMMLtrainedon NPU=20 | o® e 4
0.901 | ® PUMML trained on NPU=140 | » w
| PUPPI I
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| | ]
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NPU

PUMML more robust than PUPPI and SK
across a wide amount of pileup!

Train and test on different processes
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*—e
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600 700
mg (GeV)

800 900

PUMML demonstrates process independence!
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What is PUMML Learning?

Train PUMML on a simplified architecture

Neutral Total Filter

Charged Pileup Filter

Charged Leading Vertex Filter

0.0
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1.0
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Approximately learns linear cleansing!
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Energy Flow (Network) Analysis

Event

Observable

Particle Representation

O - Event Representation

ik

—o— |G-

. &

Inverse Gluon Jet Rejection

Inverse Gluon Jet Rejection
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—— PFN with Particle ID
RNN with Particle ID
—— PFN
RNN
—— EFN
—— Linear EFPs

Quark vs. Gluon Jets
Pythia 8.230, /s = 14 TeV
R =04, pr € [500,550] GeV
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Quark Jet Efficiency

PFEFN with Particle ID
RNN with Particle ID
PFN
RNN
—— EFN
—— Linear EFPs

Quark vs. Gluon Jets
Pythia 8.230, /s = 14 TeV
R = 0.4, pr € [500,550] GeV
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Quark Jet Efficiency
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Energy Flow Analysis

Network has learned a jet image with dynamically-sized pixels!

0.0

0.0

1.50

1.00

100

100
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