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Run: 279984
Event: 1079767163
2015-09-22 03:18:13 CEST

CMS Experiment at LHC, CERN

Data recorded: Sun Jul 12 07:25:11 2015 CEST
Run/Event: 251562 / 111132974

Lumi section: 122

Orbit/Crossing: 31722792 / 2253
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Why Boosted Tops!?

Many models of new physics contain boosted Standard Model final states

e.g. Z' — tt, cascade decays, various SUSY scenarios

Boosted tops provide a way of testing and benchmarking
multi-prong substructure techniques

L : CMS-SUS- 1 6-040
Modern boosted top tagging is extremely effective! [ ]

Current CMS default — AK8 PUPPI jets, b tagged subjets, Soft
Drop mass cuts, 732 cut [CMS-B2G-17-017, 1810.05905]

Goal of this talk: Demonstrate alternative, bottom up approaches to top tagging
that go back to the basics and attempt to harness the power of the ML revolution
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Jets as Point Clouds

Energy Flow Polynomials
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Jets as Point Clouds
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What is a Jet?

Due to quantum-mechanical indistinguishability

An unordered, collection of particles

TPk Ph) = Ty P Dy M 21, Y€ Su
Multiplicity Permutations

H : .
P;i represents dall the particle properties:

e Four-momentum — (E, Dz, Dy, D2)"
* Other quantum numbers (e.g. particle id, charge)

* Experimental information (e.g. vertex info, quality criteria, PUPPI weights)

Contrast with jet images
d dimensional particles, N x N pixels
dNZ jet image inputs, dM point cloud inputs

Azimuthal Angle ¢
= T

Particles are the medium in which theory and experiment meet

Pseudorapidity 7

Success of CMS Particle Flow validates particles as fundamental objects in particle physics
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Point Clouds

Point cloud: "A set of data points in space” —Wikipedia

LIDAR data from self-driving
car sensor
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Particle Collision Events as Point Clouds

Point cloud: "A set of data points in space” —Wikipedia

Multi-jet event at CMS
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Particle Collision Events as Point Clouds

Point cloud: "A

set

Jet/event
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of data points|in

space]' ~Wikipedia

Feature space

Multi-jet event at CMS



Processing Point Clouds

Methods for processing point clouds/jets should respect the
appropriate symmetries

requires at least one of:

Preprocessing to another representation (jet images, N-subjettiness, etc.)
Truncation to an (arbitrary) fixed size
Recurrent NN structure

Particle permutation symmetry requires:

Permutation symmetric observables
Permutation symmetric architectures
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Processing Point Clouds

Designing deep neural networks (Deeplet)

(Jan and Markus)

Build variables
per particle Summarize
particle list

Final
optimization

F»

I‘i_ charg part

Slide from Markus Stoye's talk
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Jet Representations «— Analysis Tools

Two key choices when analyzing jets

How to represent the jet <>

Single expert observable
A few expert observables

Many expert observables

Fixed Processing
Jet images

N-subjettiness basis

Energy flow polynomials

List of particles
Clustering tree Flexible Processing

Set of particles

Patrick Komiske — Point Cloud Strategies for Boosted Tops

How to analyze that representation

Threshold cut

Multidimensional likelihood

Boosted decision tree (BDT), shallow
neural network (NN)

Convolutional NN (CNN)

Dense neural network (DNN)

Linear classification

Recurrent NN (RNN)

Recursive NN

Energy flow network



Jet Representations «— Analysis Tools

Two key choices when analyzing jets

How to represent the jet <> How to analyze that representation
* Single expert observable * Threshold cut
* A few expert observables * Multidimensional likelihood
* Many expert observables * Boosted decision tree (BDT), shallow

Fixed Processing neural network (NN)

* Jet images * Convolutional NN (CNN)

* N-subjettiness basis * Dense neural network (DNN)
* Energy flow polynomials * Linear classification

* List of particles * Recurrent NN (RNN)
 Clustering tree Flexible Processing  « Recursive NN

* Set of particles * Energy flow network
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Energy Flow Polynomials

Fixed point cloud processing
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Energy Flow Polynomials (EFPs)

EFP¢ = Z Z Zi,

’I,1—
A\

inv=1

7\

[PTK, Metodiev, Thaler, 1712.07124]
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Correlator of

Energies

Vs

and Angles

Generalizes many well-known and studied classes of energy correlators observables

A family of energy correlators with angular structures determined by multigraphs

M

M M M M
=2.2.2. 2.
i1=1ip=11i3=11

—t

2
Ziy Zig Zig Zig Zig OiyioOinis Oivis 0iris0iyis 0;

13=114=115=1

Multigraph correspondence
.j — Zij
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Linear Basis of IRC-Safe Observables

One can show via the Stone-Weierstrass approximation theorem that any IRC-safe
observable is a linear combination of EFPs

S ~ Z sqcEFPqg, G a set of multigraphs

Geg :‘;

Multivariate combinations of EFPs only require
linear methods to achieve full generality

=% s

Strategy: Learn coefficients s¢ via linear regression or classification
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Familiar Observables as EFPs

EFPs organized by degree d — number of edges

Degree Connected Multigraphs
d=1
- O/\

D; = N

(o °)’

i remiva | @ ANAN A
AN AP )

— | AAAAG AN
N —— ML IAASANS

Energy correlation functions are d=5

complete graphs I/]\ {l\ ? {H\m ﬁ
plete grap X )> T

Even angularities are exact linear m {}\q

combinations of EFPs /(I\ A
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Computation Complexity of EFPs —Variable Elimination

Naive computation complexity of an energy correlator is O(M™)

For ~100 particles this becomes intractable for N > 4
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Computation Complexity of EFPs —Variable Elimination

Naive computation complexity of an energy correlator is O(M™)
For ~100 particles this becomes intractable for N > 4

[ > EnergyCorrelator fjcontrib package gives up in this case

// if N > 5, then throw error
if (N> 5) {

throw Error("EnergyCorrelator is only hard coded for N = 0,1,2,3,4,5");

}
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Computation Complexity of EFPs —Variable Elimination

Naive computation complexity of an energy correlator is O(M™)
For ~100 particles this becomes intractable for N > 4

[ > EnergyCorrelator fjcontrib package gives up in this case

// if N > 5, then throw error
if (N >5) {

throw Error("EnergyCorrelator is only hard coded for N = 0,1,2,3,4,5");

}

Variable elimination (VE) algorithm can speedup EFPs by finding efficient elimination ordering

2 4
M M M . .
9 Disconnected is product
5 _ 5 _ 5 _ i ZinZis 0 1122 i213 E : E : Ziy Zis 0 1415 of connected
’Ll—l ’1,2—1 ’1,3—1 Z4—1 Z5—
1 3 5
M M M M M M M 7
= ;, P P P P P P D 25 1Zi2 Zig ZZ'4Zi5 ZZ'6Z¢7Z¢8 H 92'12'3.
i=liz=lig=lis=1is=11ic=1ir=1is=1 j=2 Clever parentheses
y y . o) placemgnt. corresponds. to
good elimination ordering
— § : Z'il E : Zize’ilig
i1=1 =1
O(M?) Al tree graphs become O(M?)
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EFPs for Boosted Tops

103 5
o better
= 2 4
g 10 :
. ]
@
k%
=
Z 10" -
8 1 EFPs: Top vs. QCD
@3 Pythia 8.226, \/g =13 TeV
@ R = 0.8, pr € [500,550] GeV
$-( —_
JRTCE EFP 8 = 0.5
— ] d<3

d<6 - Linear
—_—d <7 === DNN
10_1 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Top Jet Efficiency
Saturation observed with more EFPs

DNN gets there faster but linear suffices
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Inverse QCD Jet Mistag Rate

Top vs. QCD

Pythia 8.226, /s = 13 TeV
R = 0.8, pr € [500,550] GeV
EFP 8=0.5,d <7

10° -
1 —— EFPs, Lin. —— Nsubs, Lin.
EFPs, DNN Nsubs, DNN
----- gray CNN ===+ color CNN
101 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Top Jet Efficiency

Linear EFPs excel at high efficiency

[de Oliviera, Kagan, Mackey, Nachman, Schwartzman, 2015]
[PTK, Metodiev, Schwartz, 2016]
[Datta, Larkoski, 2017]



BT Energy Flow Networks

/ Q Flexible/learnable point cloud processing

¥
=
S

(EFNs for Q/G talk on Thursday @ ML4Jets!)
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Symmetric Function Parametrization

A general permutation-symmetric function is additive in a latent space

Deep Sets: Namespace for additive symmetric function parametrization

Deep Sets
[1703.061 14]

Manzil Zaheer!-2, Satwik Kottur!, Siamak Ravanbhakhsh',
Barnabas Péczos!, Ruslan Salakhutdinov', Alexander J Smola'-2
I Carnegie Mellon University 2 Amazon Web Services

Deep Sets Theorem [63]. Let X C R? be compact, X C 2% be the space of sets with bounded
cardinality of elements in X, and ¥ C R be a bounded interval. Consider a continuous
function f: X — Y that is invariant under permutations of its inputs, i.e. f(x1,...,xp) =
f(@ry, -+ 2rary) for all ; € X and m € Syy. Then there exists a sufficiently large integer
¢ and continuous functions ® : ¥ — Rf, F : RY — Y such that the following holds to an

arbitrarily good approximation:!

M
f{xy,..,am}) =F (Z cp(xi)> : (2.1)
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Symmetric Function Parametrization

A general permutation-symmetric function is additive in a latent space

Deep Sets: Namespace for additive symmetric function parametrization

Deep Sets

[1703.061 14]

Manzil Zaheer!-2, Satwik Kottur!, Siamak Ravanbhakhsh',
Barnabas Péczos!, Ruslan Salakhutdinov', Alexander J Smola'-2
I Carnegie Mellon University

/ T

Feature space

—

Permutation
invariance

Deep Sets Theorem [63]. Let

cardinality of elements in X, and Y C R be a bounded interval.

X C R%be compact,

2 Amazon Web Services

/_\ Variable length

X C 2% be the space of sets|with bounded

Consider a continuous

function f: X — Y that is invariant under permutations of its inputs, i.e. f(x1,...,xp) =

[Ty, -+ Tr(ary) for all z; € X and 7 € SMI Then there exists a sufficiently large integer

¢ and continuous functions P :

arbitrarily good approximation:!

X —|RY F - |RY\— Y such that the following holds to an

“Z

f({xl,...,a:M}) F(

T

(2.1)

General parametrization for a function of sets
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Deep Sets for Particle Jets

[PTK, Metodiev, Thaler, 1810.05165]

Particle Flow Network (PFN) Energy Flow Network (EFN)

PEN({pl, ... pli}) = F (Z @(pw) EFN({pf, ... p}) = F (Z z@(zaa)

=1
Fully general latent space |IRC-safe latent space
Particles Observable
Per—Particle Representation Event Representation
| Latent Space
i o ©
O [
| T e
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=)
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____________________________________________________

Energy/Particle Flow Network
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Approximating ® and F with Neural Networks

Employ neural networks as arbitrary function approximators

Use fully-connected networks for simplicity

Default sizes — ®: (100, 100, £), F: (100, 100, 100)

()

i ViY
23T @2 0GRy
Z ] m )N'/ PN SO @ OO i PN A’(“«‘\ \
o | B¢ o QAR 08 S8 s N
2{ 5 PR 2 s IR
=) | L SIRED @5 Os QRIS T
i N 26 0 Qi U ?
\ PID () 27 g7 >
8 8 \" y \

Other particle information such

as flavor, charge, or vertex info 100 100 100 100
M M
PEFN : Oa — Z (I)a(zia Yis ¢'L’7 [PID'L']) EFN : Oa — Z Ziq)a(yia ¢z)
1=1 1=1
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Top Jet Samples and Other Methods

[Butter, Kasieczka, Plehn, Russell, 2017]

Common top and QCD dijet samples for standardized benchmarking

pr € [550,650] GeV, AKS jets, fully-merged, Delphes simulation, 2m jets total

Approach AUC Acc. 1/eB @ | Contact Comments
(eS=0.3)
LoLa 0.979 0.928 G. Kasieczka | Preliminary number, based on
S. Leiss LoLa
LBN 0.981 0.931 863 M. Rieger Preliminary number
CNN 0.981 0.93 780 D. Shih Model from (71803.00107)
P-CNN 0.980 0.930 782 H. Qu, L. Preliminary, use kinematic info
(1D CNN) Gouskos only
6-body N-subs. 0.979 | 0.922 856 K. Based on 1807.04769
(+mass and pT) NN Nordstrom
8-body N-subs. 0.980 | 0.928 795 K. Based on 1807.04769
(+mass and pT) NN Nordstrom
Linear EFPs PTK, E. d<= 7, chi <= 3 EFPs with FLD.
Metodiev Based on 1712.07124
Particle Flow PTK, E. Median over ten trainings.
Network (PFN) Metodiev Based on Table 5 in 1810.05165
Energy Flow PTK, E. Median over ten trainings.
Network (EFN) Metodiev Based on Table 5 in 1810.05165

Patrick Komiske — Point Cloud Strategies for Boosted Tops
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Classification Performance

10°

— — —
(@»)] o o
to w =~

Inverse QCD Jet Mistag Rate

—_
)
—

100

— PFN

Top vs. QCD Jets

PYTHIA 8 w. DELPHES, /s = 14 TeV
AKS, pr € [550,650] GeV, |n| < 2
Based on samples from 1707.08966

better

EFN —— Centered, rot., refl.
EFPs === Centered only
0.0 0.2 0.4 0.6 0.8 1.0

Top Jet Efficiency

Latent space dimension £ = 256

Significance Improvement

12 Top vs. QCD Jets
PYTHIA 8 w. DELPHES, /s = 14 TeV
AKS, pr € [550,650] GeV, || < 2
10 Based on samples from 1707.08966
8
6
4
—— PFN
27 EFN —— C(entered, rot., refl.
EFPs === C(Centered only
0 I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Top Jet Efficiency

EFN/PFN rotation and reflection preprocessing helpful

EFPs are comparable to EFN and even better at high signal efficiency

Patrick Komiske — Point Cloud Strategies for Boosted Tops
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EFN Latent Dimension Sweep

AUC

0.985
, better
e e e J—I
00801 | = = o ae—pmm—w— ]
,*- - § - == -
g/// - — == == —-]\
0.975 1 ] 2
-
0.970 - T Top vs. QCD Jets
PYTHIA 8 w. DELPHES, /s = 14 TeV
0.965 - AKS, pPT € [550,650] GeV, ‘7’]‘ <2
Based on samples from 1707.08966
EFN
0.955 A —e— (entered, rotated, reflected
—+= (Centered only
0950 I I I I I I
23 24 25 20 27 28

Latent Dimension
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Preprocessing clearly helpful

IRC unsafe information clearly helpful

Performance quickly saturates as
latent dimension increases
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Energy Flow Network Visualization

EFN observables are two-dimensional geometric functions

Visualize EFN observables as filters in the translated rapidity-azimuth plane

Jet images as EFN filters

Filter 1 Filter 2 Filter 3 Filter 4
ASS
%30 Filter 5 Filter 6 Filter 7 Filter 8
i
= B |
—
<
~
+~
=}
2
N Filter 9 Filter 10 Filter 11 Filter 12
<
)
<]
—
<
—
z H H
=}
o
H
Filter 13 Filter 14 Filter 15 Filter 16

N

i

Translated Rapidity y

[Cogan, Kagan, Strauss, Schwartzman, 2014]

[de Oliviera, Kagan, Mackey, Nachman, Schwartzman, 2015]
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Translated Azimuthal Angle ¢

Moments as EFN filters

Filter 1: yO qSO

Filter 2: yod)l

=

Filter 5: y!¢°

1 ]

Filter 9: y2 qSO

Filter 6: ylo!

Filter 10: y2¢1

Filter 3: yo ¢2

Filter 7: yl¢?

e ™

Filter 4: yo ¢3
[

Filter 8: yl¢3

| = _—

Filter 11: y2¢2

Filter 12: y2 ¢3
| il -

1l®

Filter 13: y3¢°

h d

(. —l

Filter 14: y3 ¢!

Filter 15: y°¢2

Filter 16: y2¢°
r

1

J

[ -

Translated Rapidity y

[Donoghue, Low, Pi, 1979]
[Gur-Ari, Papucci, Perez, 201 | ]
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Energy Flow Network Visualization

EFN o

Visuali

Translated Azimuthal Angle ¢

Translated Azimuthal Angle ¢

R/2

jen)
I

~R/2

—R

Translated Rapidity y

\

/

(

Simultaneous visualization strategy

C
WA

Translated Azimuthal Angle ¢

O

Translated Rapidity y

-R —JI%/Q (I) RI/Q R
[Cogan, K Translated Rapidity y A Pl, | 979]
[de Olivie rez,201 1]

Patrick Komiske — Point Cloud Strategies for Boosted Tops

26



Visualizing EFN Filters

Without rotation/reflection preprocessing
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Visualizing EFN Filters

Without rotation/reflection preprocessing

Translated Azimuthal Angle ¢

Patrick Komiske — Point Cloud Strategies for Boosted Tops

—R —R/2
Translated Rapidity y

N ==
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Visualizing EFN Filters

Patrick Komiske — Point Cloud Strategies for Boosted Tops

With rotation/reflection preprocessing
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Visualizing EFN Filters

Without rotation/reflection preprocessing

Translated Azimuthal Angle ¢

Patrick Komiske — Point Cloud Strategies for Boosted Tops

“R ~R/2 0 R/2 R

Translated Rapidity y
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Jets as Point Clouds

Jets have the same symmetries as point clouds
Respecting symmetries key for maximal performance

Energy Flow Polynomials

Linear basis of IRC-safe observables
Incredibly simple architecture competes with modern ML

/- QJ\ -
- 6W7@*@ o Energy Flow Networks
/ el CFDF Excellent performance, fascinating visualizations via IRC safety

Energy/Particle Flow Network

(EFNs for Q/G talk on Thursday @ ML4Jets!)

Patrick Komiske — Point Cloud Strategies for Boosted Tops
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EnergyFlow Python Package

Implements variable elimination for efficient EFP computation

CNN, DNN architectures included

Contains EFN and PFN implementations in Keras for easy model comparison

Several detailed examples demonstrating how to train models and make visualizations

Docs » Home

Welcome to EnergyFlow

EnergyFlow

Search docs EnergyFlow is a Python package for a suite of particle physics tools for computing Energy Flow
Polynomials (EFPs) and implementing Energy Flow Networks (EFNs) and Particle Flow Networks

Koa (PFNSs). Here are several of the features and functionalities provided by the EnergyFlow package:

Weicome to EnergyFlow « Energy Flow Polynomials: EFPs are a collection of jet substructure observables which form a

References complete linear basis of IRC-safe observables. EnergyFlow provides tools to compute EFPs on
Copyright events for several energy and angular measures as well as custom measures.

e Energy Flow Networks: EFNs are infrared- and collinear-safe models designed for learning from

Installation

collider events as unordered, variable-length sets of particles. EnergyFlow contains customizable
Demo Keras implementations of EFNs.

Examples

e Particle Flow Networks: PFNs are general models designed for learning from collider events as
unordered, variable-length sets of particles, based on the Deep Sets framework. EnergyFlow
contains customizable Keras implementations of PFNs.

Beyond the primary functions described above, the EnergyFlow package also provides useful
supplementary features. These include a large quark/gluon jet dataset, implementations of
additional machine learning architectures useful for collider physics, and many examples exhibiting
the usage of the package.

e Jet Tagging Datasets: A dataset of 2 million simulated quark and gluon jets is provided.

« Additional Architectures: Implementations of other architectures useful for particle physics are
also provided, such as convolutional neural networks (CNNs) for jet images.

e Detailed Examples: Examples showcasing EFPs, EFNs, PFNs, and more. Also see the EFP Demo.
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EnergyFlow Python Package

Implements variable elimination for efficient EFP computation

CNN, DNN architectures included

Contains EFN and PFN implementations in Keras for easy model comparison

Several detailed examples demonstrating how to train models and make visualizations

Docs » Home l

https://energyflow.network

Examples

« Particle Flow Networks: PFNs are general models designed for learning from collider events as

FAQs

unordered, variable-length sets of particles, based on the Deep Sets framework. EnergyFlow
contains customizable Keras implementations of PFNs.

Energy Flow Polynomials

Architectures Beyond the primary functions described above, the EnergyFlow package also provides useful
Messires supplementary features. These include a large quark/gluon jet dataset, implementations of

= additional machine learning architectures useful for collider physics, and many examples exhibiting
>éneration
the usage of the package.

Utils

Datasets e Jet Tagging Datasets: A dataset of 2 million simulated quark and gluon jets is provided.

e Additional Architectures: Implementations of other architectures useful for particle physics are
also provided, such as convolutional neural networks (CNNs) for jet images.

e Detailed Examples: Examples showcasing EFPs, EFNs, PFNs, and more. Also see the EFP Demo.

Patrick Komiske — Point Cloud"Strategiesfor Boosted Tops



Thank You!
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Classification Performance

EFPs: Top vs. QCD
Pythia 8.226, /s = 13 TeV
R = 0.8, pr € [500, 550] GeV
EFP 3 =0.5,d<7

Inverse QCD Jet Mistag Rate

10° 5
— N <3 — N <7
—_— N <5 —_— N<9
10—1 T T T T
0.0 0.2 0.4 0.6 0.8

Top Jet Efficiency
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1.0

Inverse QCD Jet Mistag Rate

10° 5

1071

EFPs: Top vs. QCD
Pythia 8.226, /s = 13 TeV
R = 0.8, pr € [500,550] GeV
EFP 8 =0.5,d<7

— X=<2
— X<3
— x <4

0.0

0.2

I I
0.4 0.6 0.8
Top Jet Efficiency
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