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Particle Physics Fundamentals

Particles Observable

Per—Particle Representation Event Representation
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Particle Physics Fundamentals

Why do we collide particles at ultra-high energies?

What are some outstanding challenges that ML can help address?

Patrick Komiske — Machine Learning for High-Energy Collider Physics
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Length/Energy Scales in Nature
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Length/Energy Scales in Nature
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Events at the LHC

High-energy proton-proton collisions produce particles with : , Charge, and flavor
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Standard Model of Particle Physics at “Low”-Energies

Patrick Komiske — Optimizing Particle Physics with Machine Learning



Standard Model of Particle Physics at “Low”-Energies
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Standard Model of Particle Physics at “Low”-Energies
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Standard Model of Particle Physics at “Low”-Energies
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Standard Model of Particle Physics at “Low”-Energies
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W boson
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Standard Model of Particle Physics at “Low”-Energies

three generations of matter interactions / force carriers
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Standard Model of Particle Physics — Unanswered Questions
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Standard Model of Particle Physics at High-Energies — as Jets

Light quarks
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Standard Model of Particle Physics at High-Energies — as Jets

Light quarks §}
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Standard Model of Particle Physics at High-Energies — as Jets
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Standard Model of Particle Physics at High-Energies — as Jets
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Visualizing Jet Formation — QCD Jets

500 GeV quark/gluon
@
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Visualizing Jet Formation — QCD Jets
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Visualizing Jet Formation — W Jets e
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Visualizing Jet Formation — W Jets e
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Jet Formation at the LHC

Jets are collimated sprays of particles arising from production of high-energy and

CMS ¢t decaying to 6 light quarks, candidate event ATLAS multi-jet event
CMS Experiment at LHC, CERN Yy Run: 279984
Data recorded: Sun Jul 12 07:25:11 2015 CEST > -¢b Event: 1079767163
Run/Event: 251562 / 111132974 4 i 2015-09-22 03:18:13 CEST

Lumi section: 122
Orbit/Crossing: 31722792 / 2253
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Jet Formation at the LHC

Jets are collimated sprays of particles arising from production of high-energy and

CMS ¢t decaying to 6 light quarks, candidate event ATLAS multi-jet event
S " ,,"'
CMS Experiment at LHC, CERN \ .,@@ . Run: 279984
Data recorded: Sun Jul 12 07:25:11 2015 CEST . 0 -l Event: 1079767163
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Jet Formation at the LHC

Jets are collimated sprays of particles arising from production of high-energy and
CMS ¢t decaying to 6 light quarks, candidate event ATLAS multi-jet event
CMS Exporimgntat LHC, CERN. “":\\;'\“‘\h g" ; Run: ?79984
Run/Event: 251562 / 111132974 2 \ 4‘@ {_‘3‘3@‘ 2015-09-22 03:18:13 CEST

Lumi section: 122

Orbit/Crossing: 31722792 / 2253 (pseudo)rapidity ~ — Intan E
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EXPERIMENT

Jets are defined via sequential recombination of particles (hierarchical agglomerative clustering)
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Particle Physics Fundamentals — Jets

Jets are critical to the success of the modern collider program



Particles Observable

Per—Particle Representation Event Representation
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Architectures for Colliders

How do we build a neural network architecture for collider events?
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Representing Jets as Images

Take advantage of existing tools for processing images

Pixel intensities ~ transverse momenta of calorimeter cell

Center on patch of rapidity-azimuth (y — ¢) plane containing a jet

“Color” (i.e. multiple channel) images possible, e.g.:

Red: p; of charged particles

Green: py of neutral particles
Blue: charged particle multiplicity

Patrick Komiske — Optimizing Particle Physics with Machine Learning

[Cogan, Kagan, Strauss, Schwartzman, |HEP 2015;
de Oliviera, Kagan, Mackey, Nachman, Schwartzman,|HEP 201 6;
PTK, Metodiev, Schwartz, [HEP 2017]

Quarks

Averages

Gluons



https://arxiv.org/abs/1407.5675
https://arxiv.org/abs/1511.05190
https://arxiv.org/abs/1612.01551

Classification and Regression with Jet Images and Convolutional NNs

Deep Learning in Color
[PTK, Metodiev, Schwartz, ]JHEP 2017/]

Quark and gluon jet classification with multi-channel jet images
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Quark Jet Efficiency

Cross-section (normalized)

Pileup Mitigation with Machine Learning (PUMML)

[PTK, Metodiev, Nachman, Schwartz, |HEP 2017]

Pileup removal via regression to the “leading vertex” jet image
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https://arxiv.org/abs/1612.01551
https://arxiv.org/abs/1707.08600

Better Neural Network Architectures for Particle Physics

Maximally appropriate ML architectures respect symmetries of the underlying data

Particle physics events are naturally “point clouds”

Patrick Komiske — Optimizing Particle Physics with Machine Learning
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Better Neural Network Architectures for Particle Physics

Maximally appropriate ML architectures respect symmetries of the underlying data

Particle physics events are naturally “point clouds”
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Better Neural Network Architectures for Particle Physics

Maximally appropriate ML architectures respect symmetries of the underlying data

Particle physics events are naturally “point clouds”

Point cloud: "A set of data points in space” —Wikipedia An unordered, collection of particles

A

[

particle € R?
{pTay’ ¢9 }

; o Dapenla = €
¢ lagee

¥ R R I T YRRy IS T e A —— =3 o1
. S - - — 54 fa €D e Cr— S & h—— -

!
L]
LR L Pe——_—

g
5 :J"_

s wen Smese mw o LA we -y -
R VE YT R R T A T S e
oz g 8y fc maw -

event € RM*d

;T‘:'*mrc‘“l L I'-.una.ﬂu,’t'*"c"' ~~~~~
. a L] z®
.II-I:I-.-.-. :ul.’: "..'N- 8 g

TE AL -ll-.'..

aram e O S gy e
=

CMS multi-jet event

LIDAR data from self-driving car sensor Due to quantum-mechanical indistinguishability

Patrick Komiske — Optimizing Particle Physics with Machine Learning |18



Deep Sets for Particle |ets

[Zaheer, Kottur, Ravanbhakhsh, Poczos, Salakhutdinoyv, Smola, NeurlPS 2017;
PTK, Metodiev, Thaler, JHEP 2019]

Particles Observable
Provable decompositions of symmetric functions
(See backup for details) Per—Particle Representation Event Representation
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Fully general latent space Energy/Particle Flow Network

EnergyFlow Python package contains EFN and PFN implementations in Tensorflow
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https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1810.05165
https://energyflow.network

Approximating ® and F with Neural Networks

Employ neural networks as arbitrary function approximators

Use fully-connected networks for simplicity

Default sizes — ®: (100, 100, £), F: (100, 100, 100)
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Particles

M M
O, = Z 2P (yi, i) PEN: O4 = Z Do (2is Yis @iy [PID;])
i=1 i=1

[PTK, Metodiev, Thaler, JHEP 2019]
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https://arxiv.org/abs/1810.05165

Quark vs. Gluon: Latent Dimension Sweep

0.90 - B Particle type info helpful
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Latent Dimension
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Quarlk vs. Gluon: Classification Performance
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Quark Jet Efficiency

Latent space dimension £ = 256

EFPs are comparable to EFN

1.0

Significance Improvement

4.0

3.9

[PTK, Metodiev, Thaler, JHEP 2019]
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PFN-ID better than RNN-ID
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https://arxiv.org/abs/1810.05165

Energy Flow Network Visualization

Visualize EFN observables as 2D filters in
the translated rapidity-azimuth plane

Filter 1

Filter 2

Jet images as EFN filters

Filter 3

Filter 4

Filter 5

Filter 6

Filter 7

Filter 8

Filter 9

Filter 10

Filter 11

Filter 12

Translated Azimuthal Angle ¢

Filter 13

Filter 14

Filter 15

Filter 16
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Filter 7: y!¢?

2

E5|
©-
N

ilter 11: y

N

L

Translated Rapidity y

Filter 4: yO qb?’

I

Filter 8: yl¢3

L__‘

Filter 12: y2 ¢3

™

-

Filter 16: y3¢3

O

L .

1.00

0.75

- 0.50

- 0.25

- 0.00

- —0.25

—0.50

—0.75

—1.00

[Donoghue, Low, Pi, PRD 1979; Gur-Ari, Papucci, Perez, 1101.2905;
PTK, Metodiev, Thaler, PRD 2020]
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Energy Flow Network Visualization — Quark vs. Gluon

EFN (£ = 256) randomly selected filters, sorted by size

[PTK, Metodiev, Thaler, JHEP 2019]

Filter 1 Filter 2 Filter 3 Filter 4
M
‘ ' EEN Oa — E qu)a(yza¢z)
igo Filter 5 Filter 6 Filter 7 Filter 8 Two-Dimensional Position
=
E ) ’ . s
= Generally find blobs of all scales
=
5 Filter 9 Filter 10 Filter 11 Filter 12
S
= \ Local nature of activated region
'_(D‘ . ‘ I d . . | I "
= » ends Interpretation as "pixels
—
= Filter 13 Filter 14 Filter 15 Filter 16
EFN seems to have learned a
L ' _‘ dynamically sized jet image!

Translated Rapidity y
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Quark vs. Gluon: Visualizing EFN Filters

A Metodiev, Thaler, JHEP 201 9]

EFN (£ = 256) rai

~ ’ ' v

Simultaneous visualization strategy

_— a(yi7¢i)
!

- C
Ontcu : . .
» - r Dimensional Position

~__ all scales

Translated Azimuthal Angle ¢

Translated Rapidity y

|
Translated Azimuthal Angle ¢

- R
< y \ / @ d regiOn
5 @ n_ . "
. D vt pixels

B g O NG /

~ 3 \/ @ \/Q Translated Rapidity y
g —R/2 - rned a

age!
- o _R/2 0 R/ R

Translated Rapidity y
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Quark vs. Gluon: Visualizing EFN Filters

Patrick Komiske — Optimizing Particle Physics with Machine Learning
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Quark vs. Gluon: Visualizing EFN Filters
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Quark vs. Gluon: Visualizing EFN Filters
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Quark vs. Gluon: Visualizing EFN Filters
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Quark vs. Gluon: Visualizing EFN Filters
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Quarl ve. Gluon: Visualizing EFN Filters

my
~—
\)

Translated Azimuthal Angle ¢
|
v
~—
D o

Patrick Komiske — Optimizing Particle Physics with Machine Learning

\

~

Translated Rapidity y

Energy Flow Network Latent Space (£ = 256)
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Quarlk vs. Gluon: Visualizing EFN Filters

Energy Flow Network Latent Space (£ = 256)

\ -

<

o R/2-

z

— €he New Pork Eimes
=

=

£ 0-

N

<

e

D

=

=

= R/2-

- Image: Alex Eben Meyer

Translated Rapidity y

“It looked like a pile of multicolored rubber bands, but it represented several layers of processing [...]”
— Dennis Overbye, Can a Computer Devise a Theory of Everything? New York Times, November 23, 2020.

Patrick Komiske — Optimizing Particle Physics with Machine Learning
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Quark vs. Gluon: Measuring EFN Filters

0
EFN256: Quark vs. Gluon

Energy Flow Network appears to have learned —17 Pyrmia 8230, V5 = 14 TeV
. . . = 0. GeV

about the collinear singularity of QCD! | T4 pr € 1900, 550] e

e [Filter

- 2 === Best fit, slope = 1.61
Slope of 2|is predicted by QCD ™
=
-
N
=
O
0 s
A
dln —= dyg| = 64/dy d¢
: T
I Area element in rap-phi plane
Emission plane area element 0
. . 6
Radial Distance, In Iz
(666-6\ Ip 200 C df dz
R 1—>1g — - "% . Power-law dependence between filter size and

distance from center is observed
Altarelli-Parisi splitting function describes gluon emission
(Additional analysis of filters in backup)

Patrick Komiske — Optimizing Particle Physics with Machine Learning



Particles Observable

Per—Particle Representation Event Representation

! Latent Space :
O = :
- Z Fee el
| [ ) o [14
! o !
i L i

____________________________________________________

Energy/Particle Flow Network

Patrick Komiske — Machine Learning for High-Energy Collider Physics

Architectures for Colliders — EFNs/PFNs

Simple, extensible neural network architecture(s) for collider events
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Patrick Komiske — Machine Learning for High-Energy Collider Physics

Statistical Deconvolution

Can ML overcome the curse of dimensionadlity in correcting mis-measurements?
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Correcting for Detector Effects — a.k.a."Unfolding”

[,

eCi

Measurements are affected by detector eff

ts such as finite resolution, miscalibration, and limited acceptance

Detector-level Particle-level

=

=

=

=

1

y4

02 J .
= Simulation
= o
g ,)ﬁ
o
N

(Generation

=
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Correcting for Detector Effects — a.k.a."Unfolding”

[,

Measurements are affected by detector eff

Detector-level

=

=

=

=

1

4

9 . .
= Simulation
= o
g ,)ﬁ
o

N

Patrick Komiske — Optimizing Particle Physics with Machine Learning

ects such as finite resolution, miscalibration, and limited acceptance

Particle-level

PYTHIA, HERWIG, SHERPA

(Generation

=
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Correcting for Detector Effects — a.k.a."Unfolding”

fects such as finite resolution, miscalibration, and limited acceptance

Measurements are affected by detector eff

Detector-level Particle-level
. ﬁ)ata \
<
L
= \ A
)
<
Z \\ /
GEANT, DELPHES PYTHIA, HERWIG, SHERPA
9 : : .
2 Simulation Generation
= s
>
N

Learn detector response from trustable simulation
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Correcting for Detector Effects — a.k.a."Unfolding”

fects such as finite resolution, miscalibration, and limited acceptance

Measurements are affected by detector eff

Detector-level Particle-level
. ﬁ)ata \
<
L
= \ %
)
<
Z \\ /

ATLAS, CMS

GEANT, DELPHES PYTHIA, HERWIG, SHERPA
9 : : .
2 Simulation Generation
= s
>
N

Learn detector response from trustable simulation
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Correcting for Detector Effects — a.k.a."Unfolding”

fects such as finite resolution, miscalibration, and limited acceptance

Measurements are affected by detector eff

Detector-level Particle-level

Truth-level measurements can be compared across
experiments and to theoretical calculations

Goal of unfolding is to learn a particle-level model
that reproduces the data

ATLAS, CMS

GEANT, DELPHES PYTHIA, HERWIG, SHERPA

Simulation Generation

Synthetic

Learn detector response from trustable simulation
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Correcting for Detector Effects — a.k.a."Unfolding”

fects such as finite resolution, miscalibration, and limited acceptance

Measurements are affected by detector eff

Detector-level Particle-level

Truth-level measurements can be compared across
experiments and to theoretical calculations

Goal of unfolding is to learn a particle-level model
that reproduces the data

ATLAS, CMS ' Unfolding Quantum Computer Readout Noise

[Nachman, Urbanen, de Jong, Bauer, 1910.01969]

Quantum Computing

|¢z‘>./74
vd

readout
noise

High Energy Physics

GEANT, DELPHES PYTHIA, HERWIG, SHERPA

Simulation (Generation

state

Synthetic

t FIG. 1. A schematic diagram illustrating the connection '
| between binned differential cross section measurements in high |
- energy physics (left) and interpreting the output of repeated
i measurements from quantum computers (right). ‘

Learn detector response from trustable simulation
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Challenges with Traditional Unfolding

Previous methods explicitly rely on histograms

Binning fixed ahead of time, cannot be changed later
Performance of method sensitive to binning

Limited number of observables

Binning induces curse of dimensionality

Response matrix depends on auxiliary features

Detector-level quantity may not capture full detector effect

Example — Two jets acquiring the same mass in different ways

Jet 1 Jet 2
Two hard prongs Hard core, diffuse spray

Patrick Komiske — Optimizing Particle Physics with Machine Learning

Iterated Bayesian Unfolding (IBU)

also called Richardson-Lucy Deconvolution

Maximum likelihood, histogram-based unfolding
method for a small number of observables

| Choose observable(s) and binning at detector-level and particle-level

measured distribution: 1,; = Pr(measure 7)

0 -
true distribution: /3" = Pr(truth is ;)

| Calculate response matrix R;; from generated/simulated pairs of events

R, = Pr(measure i | truth is j)

: Calculate new particle-level distribution using Bayes’ theorem

(n) _
L

ZPI‘ (truth,,_; is j | measure i) X Pr(measure 7)
t(n 1)

_ZZ w;t(n 1)

k

i Iterate procedure to remove dependence on prior

[Richardson, |JOSA 1972; Lucy,A] 1974; D’Agostini, NIMPA [995]
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Likelihood Reweighting via Classification

Likelihood ratio is optimal binary classifier by Neyman-Pearson lemma

L — likelihood ratio
P(w,X) (2) w — weights
P(w’, X7 () X — phase space

x — element of X

p — probability density

L[(wv X)7 (wlv X’)](IE) —

Patrick Komiske — Optimizing Particle Physics with Machine Learning
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Likelihood Reweighting via Classification

Likelihood ratio is optimal binary classifier by Neyman-Pearson lemma

L — likelihood ratio
L] | |(2) = (2) w — weights
() X — phase space
x — element of X
p — probability density

Model output of a well-trained classifier accesses likelihood ratio

L{(w, X), (w', X")|(x) Assuming soft tput
/ / ~ y y y g SoTtmaXx output,
|\/|Od6|[(w,X)a (UJ ,X )](33) 14+ L[(w,X), (w/7X/)]($) categorical cross-entropy loss

[Cranmer, Pavez, Louppe, 1506.02169; Andreassen, Nachman, PRD 2020]

Patrick Komiske — Optimizing Particle Physics with Machine Learning

33


https://arxiv.org/abs/1506.02169
https://arxiv.org/abs/1907.08209

Likelihood Reweighting via Classification

Likelihood ratio is optimal binary classifier by Neyman-Pearson lemma

L — likelihood ratio
|(z) = P(w,x)(2) w — weights
(CU) X — phase space
x — element of X
p — probability density

Li(w, X),

Model output of a well-trained classifier accesses likelihood ratio

L[(w, X)v ](w) Assuming softmax output,
Model [(w, X), ](LU) — 1+ L[(w, X), ](33) categorical cross-entropy loss

[Cranmer, Pavez, Louppe, 1506.02169; Andreassen, Nachman, PRD 2020]

OmniFold repeatedly reweights one weighted sample (A) to another (B)

Model|(wg, B), (wa, A)](x)

, _ % . - T
wa(x) = wa(x) 1 — Model[(wg, B), (wa, A)l(x) A’ is statistically indistinguishable from B

Likelihood reweighting requires effective classification of events

Patrick Komiske — Optimizing Particle Physics with Machine Learning
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Simultaneously Unfolding All Observables — OmniFold Q

[Andreassen, PTK, Metodiev, Nachman, Thaler, PRL 2020]

OmniFold weights particle-level Gen to be consistent
with Data once passed through the detector

Detector-level Particle-level
-§ Data
-
21N
V4 \
= . . .
o Simulation (Generation
= e
S =
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Simultaneously Unfolding All Observables — OmniFold Q

[Andreassen, PTK, Metodiev, Nachman, Thaler, PRL 2020]

OmniFold weights particle-level Gen to be consistent
with Data once passed through the detector

Detector-level Particle-level
Step 1
Reweights Sim;.1 to data, pulls weights back to particle-level Gen, . . Data
Incorporates the response matrix ﬁ
= \ A
)
7
Step 1:
Data
Un—1 —— Wn
= 4% ° . Pull Weights .
D Simulation | 5 | Generation
-
>
P
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Simultaneously Unfolding All Observables — OmniFold Q

[Andreassen, PTK, Metodiev, Nachman, Thaler, PRL 2020]

OmniFold weights particle-level Gen to be consistent

with Data once passed through the detector
Detector-level Particle-level

Step 1

Reweights Sim;.1 to data, pulls weights back to particle-level Gen, . Data
Incorporates the response matrix
Reweights Gen,.1 to (step 1)-weighted genn.1, pushes weights to \

detector-level Sim,

Natural

Constructs valid particle-level function by averaging gen-level weights

Step 1: Step 2:
Un—_1 M W, Vn—1 = Un

Pull Weights

Simulation | 5 | Generation

Push

Synthetic
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Simultaneously Unfolding All Observables — OmniFold Q

[Andreassen, PTK, Metodiev, Nachman, Thaler, PRL 2020]

OmniFold weights particle-level Gen to be consistent

with Data once passed through the detector
Detector-level Particle-level

Step 1

Reweights Sim;.1 to data, pulls weights back to particle-level Gen, . Data
Incorporates the response matrix
Reweights Gen,.1 to (step 1)-weighted genn.1, pushes weights to \

detector-level Sim,

Natural

Constructs valid particle-level function by averaging gen-level weights

- Step 1: Step 2:
OmniFold , , D e

Step 1 — w,(m) =" x L[(1, Data), (", Sim)](m)

Pull Weights

Simulation | 5 | Generation

Push

Step 2 — vp(t) = vp—1(t) % L[(wP™, Gen), (v, —1, Gen)](t)

Unfold any* observable .. using universal weights ., (1)

Synthetic

pl(:fl)folded(t) = Vn(t) X PGen(t)

*Observables should be chosen responsibly

Patrick Komiske — Optimizing Particle Physics with Machine Learning
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Simultaneously Unfolding All Observables — OmniFold

[Andreassen, PTK, Metodiev, Nachman, Thaler, PRL 2020]

OmniFold weights particle-level Gen to be consistent

Re The Mountain sat upon the Plain
In his tremendous Chair —
is observation OmniFold,
R Is inquest, everywhere —

he Seasons played around his knees
- ike Children round a sire —
randfather of the Days is He
f Dawn, the Ancestor —

mily Dickinson, #975

Patrick Komiske — Optimizing Particle Physics with Machine Learning
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Testing OmniFold — Z + Jet Case Study

[Andreassen, PTK, Metodiev, Nachman, Thaler, PRL 2020]

Z(— utu~) + Jet Events

“Data” — HERWIG 7.1.5

MC — PYTHIA 8.243, tune 26
| .6 million events each after cuts

Detector Simulation ‘,
CMS-like detector — DELPHES 3.4.2 fi

- Jets
| Anti-k,, R = 0.4 — FASTJET 3.3.2 |
pZ > 200 GeV, assume excellent muon}
detector resolution

Datasets publicly available
—With two additional Pythia tunes @
—Accessible via EnergyFlow

OmniFold Binder Demo

Patrick Komiske — Optimizing Particle Physics with Machine Learning

o, M

jet
A
ut
[PTK, Metodiev, Thaler, JHEP 2019] /?<
q
. //lj—
Particles Observable
Per—Particle Representation Event Representation

| 1
| 1
: o o l
b i
EOQ i
1 |
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|
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____________________________________________________

Energy/Particle Flow Network

Particle Flow Network (PFN) architecture
processes full radiation pattern of the event

— PFN-Ex: (p;.y. ¢, PID) input features
— @ : (100, 100,256) dense layers

— F: (100,100,100) dense layers

— RelU activations, softmax output
— Categorical cross-entropy loss

— 20% validation sample

- 10 epoch patience
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OmniFolding Jet Substructure Observables

Single OmniFold instantiation vs. separate instantiations of IBU

Successful unfolding means |IBU/OmniFold should approach Truth

Patrick Komiske — Optimizing Particle Physics with Machine Learning
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OmniFolding Jet Substructure Observables %%

L
Single OmniFold instantiation vs. separate instantiations of IBU /q/bzm<

Successful unfolding means |IBU/OmniFold should approach Truth

0.06 | 1 “Data” 1 “Truth” -
[ Sim. -=-  Gen. ]
. *— [BU M = (OmniFold 7

D/T: HERWIG 7.1.5 default
S/G: PyTHIA 8.243 tune 26
DELPHES 3.4.2 CMS Detector
Z+jet: p%4 > 200 GeV, R = 0.4

0.05 F

0.04 F

0.03 |

Normalized Cross Section

0 20 40 60 80
Jet Constituent Multiplicity M

Number of particles in the jet

OmniFold equals or outperforms |IBU
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OmniFolding Jet Substructure Observables

Single OmniFold instantiation vs. separate instantiations of IBU

Successful unfolding means |IBU/OmniFold should approach Truth

» T T T I T T T I T T T I T T T ] 0.30 i ! ! ! | ! ! ! | ! ! ! | ! ! ! | ! ! ! | ! !
0.06 F 1 “Data” 1 “Truth” A " [ 1 “Data” D /T: HERWIG 7.1.5 default
I . . ] B % ” S/G PyTHIA 8.243 tune 26 N
g I Sim. Gen. i % 0.25T - '.I‘ruth DELPHES 3.4.2 CMS Detector
i 0.05 | e—e [BUM == OmniFold 1 £ Sim. Z+jet: pZ > 200 GeV, R=0.4 |
R T D) - 1
o3 [ D/T: HERWIG 7.1.5 default Uw) 0.20 Gen. R i
2 0041 S/G: PYTHIA 8.243 tune 26 z e IBUlnp /7 7\
5 [ DELPHES 3.4.2 CMS Detector 3 015 F == OmniFold / y- ]
— 0.03 Z+jet: pZ > 200 GeV, R = 0.4 = [
) | B 1
% : % 0.10 . \\\\__/,’\\ -
= 0.02 | 2 i \
g : 2 :
0.01f 0.05F 2 1
I [ R
0.00 0.00 e N e e L e e S B
o 115F 2. 115f F " o
of:’ C 2% 10E HELEs ol - = e Pl e ;
'_%‘ E 1.0 . I 45&;_‘ : E S = E
= 085 w085 F
C [ | 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1
0 50 10 50 20 14  -12 -10 -8 -6 —4 -2
Jet Constituent Multiplicity M Soft Drop Jet Mass In p
Number of particles in the jet De-noised invariant mass of jet

OmniFold equals or outperforms |IBU

Patrick Komiske — Optimizing Particle Physics with Machine Learning




OmniFolding Jet Substructure Observables

Normalized Cross Section

Ratio to
Truth

Patrick Komiske — Optimizing Particle Physics with Machine Learning
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Successful unfolding means |IBU/OmniFold should approach Truth
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(Additional unfolded distributions in backup)
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OmniFolding Jet Substructure Observables

Measurement of lepton-jet correlations in high O?
neutral-current DIS with the H1 detector at HERA

The H1 Collaboration

Abstract

. o Hlprelim-21-031

A measurement of jet production in high Q? neutral-current DIS events close to the Born-level con- April 4. 2021
) . . . _ . pril 4,

figuration ¥*q — g (Born kinematics) is presented. This cross section is measured deferentially as
a function of the jet transverse momentum and pseudorapidity, as well as lepton-jet momentum im-
balance and azimuthal angle correlation. The jets are reconstructed in the laboratory frame with the
kr algorithm and a distance parameter of 1.0. The data are corrected for detector effects using the
OMNIFOLD method,|which incorporates a simultaneous and unbinned unfolding in four dimensions
using machine learning. The results are compared with leading order Mont Carlo event generators
and higher order calculafions performed within the confext of collinear or transverse-momentum-
dependent (TMD) factorization in Quantum Chromodynamics (QCD). The measurement probes a
wide range of QCD phenomena, including TMD parton-distribution functions (PDFs) and their evo-
lution with energy.

n C

First application of OmniFold by an experimental collaboration!
Number

In progress — OmniFolding jets in CMS Open Data to extract quark/gluon jet distributions
[PTK, Kryhin, Thaler, to appear soon]

Patrick Komiske — Optimizing Particle Physics with Machine Learning
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stributions in backup)
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Optimal Transport in Particle Physics

Patrick Komiske — Optimizing Particle Physics with Machine Learning
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When are Two Distributions similar?

Optimal transport minimizes the “work” (stuff x distance) required to transport supply to demand

R R

R/2 - - o R/2 -
Q. < :
'. - : . y '.. .. .
0 L @ 0 - v
.~ o -
: 4.
—R/2 A —R/2 - -
_R | | | —R | | I
—R —R/2 0 R/2 R ~R —R/2 0 R/2 R

[Monge, 1781;Vaserstein, 1969; Peleg,VWerman, Rom, IEEE [989;
Rubner, Tomasi, Guibas, ICCV 1998, IC]V 2000; Pele,Werman, ECCV 2008; Pele, Taskar, GSI 201 3] A
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When are Two Distributions similar?

Optimal transport minimizes the “work” (stuff x distance) required to transport supply to demand

R R

R/2 - - o R/2 -
S .
0 . e @ 0
> o <= «
o .. ‘ o o
—R/2 A —R/2 - -

_R | | | _R | 1 |

R “R/2 0 R/2 R “R “R/2 0 R/2 R

[Monge, 1781;Vaserstein, 1969; Peleg,VWerman, Rom, IEEE [989;
Rubner, Tomasi, Guibas, ICCV 1998, IC]V 2000; Pele,Werman, ECCV 2008; Pele, Taskar, GSI 201 3] A
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When are Two Distributions similar? o1 f") s e

Optimal transport minimizes the “work” (stuff x distance) required to transport supply to demand

Top Jet | Top Jet 2
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[Monge, 1781;Vaserstein, 1969; Peleg,VWerman, Rom, IEEE [989;
Rubner, Tomasi, Guibas, ICCV 1998, IC]V 2000; Pele,Werman, ECCV 2008; Pele, Taskar, GSI 201 3] A
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When are Two Distributions similar? R I
Y Y
Optimal transport minimizes the “work” (stuff x distance) required to transport supply to demand
Top Jet | Top Jet 2
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Energy Flow Distribution . . _ . . o .
L, symmetric, non-negative, triangle inequality, zero iff identical

Provides a metric on normalized distributions in a space with a ground distance measure

0ij = \/Ay%j T A¢?j

Ground Distance

[Monge, 1781;Vaserstein, 1969; Peleg,VWerman, Rom, IEEE [989;
Rubner, Tomasi, Guibas, ICCV 1998, IC]V 2000; Pele,Werman, ECCV 2008; Pele, Taskar, GSI 201 3] A
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When are Two Distributions similar?

Optimal transport minimizes the “work” (stuff x distance) required to transport supply to demand
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Energy Flow Distribution . . . . . o .
L, symmetric, non-negative, triangle inequality, zero iff identical
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The Energy Mover’s Distance (EMD)

[PTK, Metodiev, Thaler, PRL 2019 (editors’ suggestion), Featured in Physics Magazine;
PTK, Metodiev, Thaler, [HEP 2020;
EnergyF Low and Wasserstein Python Packages]

EMD between energy flows defines a metric on the space of events

B
EMDg g(&, &) = (2
p.R(E {f51>n0}242‘f”< ) "

2_Ei

-y
J

Distance (in GeV) Cost of optimal transport

Zfij < L, Zfzj < I, Zfij = min (Z E;, ZEé)
J 1 ] ( J

Cost of energy creation

Capacity constraints to ensure proper transport

7,

R: controls cost of transporting energy vs. destroying/creating it

f: angular weighting exponent
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Abstract “space of events”

Following geodesics

g / in event-space

EMD(E, &)

< EMD(&, £")

+ EMD(E”, £

Triangle inequality satisfied for R > dax/2

i.e. R > jet radius for conical jets
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VisualiZing GeOmetl"y in the Space of Events [PTK, Mastandrea, Metodiev, Naik, Thaler, PRD 2019;

code and datasets at energyflow.network]

t-Distributed Stochastic Neighbor Embedding (t-SNE) Jets from the CMS 201 | Open Data
MNIST handwritten digits
5 5 1.0
: : CMS 2011 Open Data
: : AK5 Jets, |net] < 1.9
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i E ~ 0.8
: : -
1 1 .2 <
' ' n
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: ; = 0.6 =
E : = 7
' *t:l‘ .65‘4‘ [“‘ff“ s L 1’9” 5 t‘ » “ g 4 I’II/A,’ ‘ K : E
BT el ek ol : :
. R 8l B - =
! 6 3, 25 % :.,‘sgi"ff ; 3 Hun” ‘t“'{,t“'” ' o 0.4 &
5 , ; ﬁg:é s ‘*'“\':i,‘.i;".u‘h.. A 5 = N\ S
: L R AR : ] | @
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: ; ‘ﬁa a{} ;y 4 ™, : Cf) l
" 837 22 Rl % G I : N
: sy : - N 0.2
' f; '325‘,;:434 9‘&7&3 '
: "!':_;a ;},?ﬁ?ﬂ =% :
E - 5 %@f? E CHS, Tracks, p2F®C > 1 GeV
: 6 : Scaled to 400 GeV, Rotated
; F ! . . : 0.0
: 0 : t-SNE Manifold Dimension 1
[L.van der Maaten, G. Hinton, JMLR 2008 ] 25 most representative jets (“medoids”)

Size is proportional to cross section associated to that medoid
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https://arxiv.org/abs/1908.08542
https://energyflow.network/docs/datasets/#cms-open-data-and-the-mod-hdf5-format

Unfolding Beyond Observables

Correlation dimension: how does the # of
elements within a ball of size Q change?
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Weighted events naturally accommodated
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Same OmniFold training can unfold a
complicated function of pairs of events!

Larger detector effects and loss of stats seen at low ©Q

43



Unfolding Beyond Observables

. in CMS Open Data

[PTK, Mastandrea, Metodiev, Naik, Thaler, PRD 2019] - Q [PTK Kryhln Thaler, to appear soon’
0 - - — T - - St
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https://doi.org/10.1103/PhysRevD.101.034009

Patrick Komiske — Machine Learning for High-Energy Collider Physics

Statistical Deconvolution — OmniFold

Likelihood-free inference uses high-dimensional classifiers (PFNs) to avoid
explicit histograms and overcome the curse of dimensionality in unfolding
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pip3 install energyflow

EnergyF Low Python Package

Implementations of EFNs/PFNs in Tensorflow, parallelized EMD calculations (in C++)

Detailed examples, demos, and documentation

Interfaces with CMS 201 [ A Jet Primary Dataset (and other datasets) hosted on Zenodo

| @ hub.gke.mybinder.org/user/pkomiske-enerayflow-Uls4z3ee/notebooks/demas/EMD%20Demo.pynb - i
i Jupyter EMD Demo iautosaved) P Join thigrepo's Vidze Chat | Visitrepo || Copy Binder link Upload Communities & pRegmLead
File Ediz Visw Irsert Cell Kernel \Vidgets Help Not Trusted Python3 O
R+ x B A v HRun B C M Markdown v = &Cownload & & O GitHub % Binder August 8, 2018

EnergyFlow Welcome to EnergyFlow

CMS 2071A Open Data | Jet Primary Dataset |

Search docs

EMD Demo

EnergyFlow website

pT > 375 GeV | MOD HDF5 Format

274 432

Home Komiske Patri Mastandrea, Radha, @ Metociev, Eric; D Naik, Preksha, @ Thaler, Jessz
Welcome i Ereralbilin 1 In this tutorial, we demcnstrate how to compute CMD values for particle physics events. The core of the computation is cone using the Python Optimal A dataset of 1,785,625 jets from the Jet Primary Dateset of thre CWMS 2011A Open Date reprocessed into the MOD HDF5 @ views & downloads
I 24 Transport library with EnergyFlow providing a convenient interface to particle physics events. Batching functionality ie also provided using tha builtin format. Jets are selected from the hardest two anti-kT R=0.5 ets in events passing the Jet300 High Level Trigger and ae Sl rosradatal
i { QT ] 3 SeEe mare datalis
References . muliprocessing ioraty (o distibute compuriations to wiorker processee. required to have p#' > 375 GeV, where p?‘ includes a jet energy correction fector. Particle Flow Candidates (PFCs) for
g each Jet are provided and Include Informatior about e PFC kinematics, PDG |D, and vertex. Additionaly, Jets have
Copyright J . ) p yJ Tweeted by 3

Installation
Demos
Examples
FAQs

Release Nutes

News

EMD: 1593 GeV

EnergyFlow is a Python package containing a suite of particle physics tools:

Energy Mover's Distance

The Energy Mover s Distance was introducec in 1902.02245 as a metric between particle physics events, Closely related to tha Earth Mover s Distance, tha
EMD solves an optimal transport problem betwean two distrinutions of anergy (cr transverse moment.um), and the associated distance is the "work® required
to transport supply to demand according to the resulting flow. Mathematically, we have

0 - .
EMD(E, £') = ‘}mn;meu;: ) E- ) B
L oy i) i j

i
Z.fij < E, Zfi_i < Ej, Zfi/ = min(ZE,, ZEJ')
J i i i 7

metadata describing their kinematics and provenance in the original CMS AOD files

For additional details about the dataset, please see the accompanying paper, Exploring the Space of Jets with CMS Open
Data. There, jete were furthe- restricted to have || < 1.9 to ensure tracking coverage and have "medium’ qality to
reject fake jets.

The supported method for downloacing, reading, and using this dataset is througk the EnergyFlow Python package, which
has adcitional documentaticn about how to read and use this and related datasets. Should any prcblems be encountered,
please submit an issue on GitHub.

There are correspording datasets of simulated jets orgarnized by hard parton py also available on Zenodo:

o SIM/GENQCD Jets
SIM/GEN QCD Jets 30

See more details

ndexed in

OpenAlIRE

Imports Z
; o EnergyFlow Polynomials: EFPs are a collection of jet substructure observables which forma In [1]s dmpost nuspy am: ap &
Architectures : 2 = imazplotlib ‘nline
complete linear basis of IRC-safe observables. EnergyFlow provides tools to compute EFPson import matplotlib.pyplot as plt .
Dalasels { e SIM/GEN =
events for several energy and angular measures as we!l as custom measures. e P e < SIN/OENG Publication :iatce.
EMD ALgust 8,201¢
. . . / DOl
. o A er e 3 - i - Files (2.0 38) v
Energy Flow Mo . Enlclzidgy Flow thworksdEFr:s are. |r;f|ra;'ed ahnd colllfnear 'selee r:odels geSIgned fo.r learning frog; Plot Style I
- | T
Energy Flow Polynomials co e-r events as UI.’IOI' ered, varia .e ength sets o -partlc es. EnergyFlow contains customizable Name Size Keyword(s):
Keras implementations of EFNs. Available fromversion ¢.16.0 onward. in [2]: plt.rcparams|'figure.figsize'| = (4,4) [ cms | opendata | the | jet | substructwre | hep |
Measures plt.rcParams|'figure.dpi'] = 120 CMS_Jet300_pT375-infGeV_0_compressed h5 111.2MB & Download
plt.rcParams| 'font.family'] = 'serif’ S b e ' avnios m
Multigraph Generation e Particle Flow Networks: PFNs are general models designed for learning from collider events as mdE: 1420401 361 6002654/0e L Rg:;:ﬂﬁ:z:i:‘::rs.
Observables unordered, variable-length sets of particles, based on the Deep Sets framework. EnergyFlow Load EnergyFlow Quark/Gluon Jet Samples CMS_.Jet300_pT375-nfGev_1C_compressed.hs e e arXiv:1908.08542
Utile contains customizable Kerzs implementations of PFNs. Available from version e.16 @ onward. R C o ' = License (for files):
In [3]: # load guark f.lnd gluon jets md6:7f5c6ab36cb7( 11160946 @ Z Creative Commons Attribution 4 0 International
X, vy = ef.gg_jets.load(20C0, pad=False)
4 e ' : . f g IR i _ :
o Energy Mover's Distance: The EMD is a common metric between probability distributions that 3 CMS._Jet300_pTa75-nfGeV_11_compressed hi 111.3MB Eownioad
has been adapted for use as a metric between collider events. EnergyFlow contains code to # the jot radius for these jets
facilitate the computation of the EMD between events based on an underlying implementation R = 0.4 2e1865c608106e60hc0a)15¢e53 © Versi
; . : : - ersions
provided by the Python Optimal Transport (POT) library. Available from version @ 11 8 onward. # process jets CMS_Jet300_pT375-infGeV_12_compressed.hs 111.7MB & Download
Gs, 0s =[], [] Aun @ 2010
for arr,events im |[(G6s, X[y==0]), (Qs, Xjy==l])]: ; Vtra!OI\ vu . Aug 8, 2019
mdSia 10.5281/2cnodo 3340206

e Energy Flow Moments: EFMs are moments built out of particle energies and momenta that can
be evaluated in linear time in the number of particles. They provide a highly efficient means of
implementing 8 = 2 EFPs and are also very useful for reasoning about linear redundancies that
appear between EFPs. Available from version 1.e.6 onward.

for i,x in cnumecratc|cvents):
if 1 >= num:
break

# ignore padded particles and removed particle id information
x = x[x[:,0] > 0,:3]

CMS_Jet300_pT375-infGeV_13_compressed.hS 111.3MB & Download

12e8691¢4665402460 @

Cite all versions? Vo1 can rite all veranns by ising the DO

10 od 204, This DDI represents zll versions
and will aways resolve 1o the latest onz. Read more

CMS_Jet300_pT375-intGeV_14_compressed.h§ ; % Downloac
# center jet according to pt-centroid MSJeR00 pTd GAV- 4 conpnated h i & Dawnicad
. " o = . $,1:3 TE=X[¢ ‘ =
The EnergyFlow package also provides easy access to particle phyiscs datasets and useful z‘(’r_’ir‘?‘;? _=“5P:Z°:ge‘x[ £253] 7 WelgnEasX 4, 01 AxIERG) o e
supplementary features: Share
# mask out any particles farther than R-0.4 away from center (rarc) CMS_Jet300_p | 3/5infGeVv_ _compressed.hb 111.0MB & Download
x = x[np.linalg.norm(x[:,1:3], axis=l) <= R]
o6k ”» . 2 =w] f e+
e CMS Open Dzta in MOD HDF5 Format: Reprocessed datasets from the CMS Open Data, md5:0kd33b3 a @
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# add to list
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Event Representation

Energy/Particle Flow Network

Patrick Komiske — Machine Learning for High-Energy Collider Physics

Particle Physics Fundamentals — Jets

Jets and jet substructure will be essential to the next big collider discovery

Architectures for Colliders — EFNs/PFNs

EFNs/PFNs enable simple, fast, powerful deployment of deep learning for
high-energy collider events

Statistical Deconvolution — OmniFold

Substantially improved unfolding enables multi-differential measurements
with smaller uncertainties
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Thank you!
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Additional Slides
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Visualizing Jet Formation — Top Jets

V\. Three-prong decay

decay to W (decays to quark/ 1611 GeV
anti-quark) and a b quark '

v
o
fragmentation into l 471 GeV
quarks and gluons
@ |
'
hadronization intF) 97 0 GeV
detector-stable particles
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Jet Formation in Theory

— interesting high-energy dynamics
Perturbative quantum field theory, Feynman diagrams

Patrick Komiske — Optimizing Particle Physics with Machine Learning
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Jet Formation in Theory

— interesting high-energy dynamics
Perturbative quantum field theory, Feynman diagrams

Fragmentation — additional gluon radiation
Semi-classical parton shower, effective field theory

Fragmentation

partons @) DO ...
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Jet Formation in Theory

— interesting high-energy dynamics
Perturbative quantum field theory, Feynman diagrams

Fragmentation — additional gluon radiation
Semi-classical parton shower, effective field theory

Hadronization — confinement into hadrons /,/ APt
Poorly understood (non-perturbative), modeled empirically Ra ’

Fragmentation

partons @) DO ...
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Hadronization

hadrons @@
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Jet Formation in Theory

— interesting high-energy dynamics
Perturbative quantum field theory, Feynman diagrams

Fragmentation — additional gluon radiation

s E ~ lim n;TY(t, vtn)

t— 00
Semi-classical parton shower, effective field theory ,
/S 7 St
. . MR ress-energy flow
Hadronization — confinement into hadrons /.//.//,/ &7
Poorly understood (non-perturbative), modeled empirically 7/ ){/ s Operator that probes direction
/~// /"/‘;‘ P ' and amount of outgoing energy
oy >
A are RaPR ) X
7 s -~
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PRt v
Zoziil PP
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e
- _ - 1/

Detection
Hadronization

Fragmentation ~ hadrons P .
partons ()@@ ..

[Sveshnikoyv, Tkachov, PLB 1996; Hofman, Maldacena, |HEP 2008; Mateu, Stewart, Thaler, PRD 201 3;
Dixon, PTK, Moult, Thaler, Zhu, to appear soon]
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Introduction to Machine Learning
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Introduction to Machine Learning

Machine learning comprises statistical algorithms and techniques designed to meaningfully engage with data

'statistics) + |computer science)

V2

'machine learning) ~ |data science) =

Meaningful
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Structure Image
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Introduction to Machine Learning

Machine learning comprises statistical algorithms and techniques designed to meaningfully engage with data

'statistics) + |computer science)

V2

'machine learning) ~ |data science) =

Example — Binary Classification

Meaningful
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Structure Image

b A Custormer Retention
iscovery Classification

Signal Background

Big data Dimensionality Feature Idenity Fraud

isuali ; Classificati Diagnostics
Visualistaion Reduction Eliciration Detection assification 8

Advertising Popularity §
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Systems UﬂSUPEFVlsed SuperV|Sed Prediction
Learning Learning Weather
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T Machine Y -
§ Marketing _ arket ;
. - Gc;omh Forecasting }
rediction

Customer

SN Lcarning

Estimating
life expectancy

Common paradigm — minimize a loss function

Reinforcement
Learning

loss = <(modelu~,(inputs) — outputs)2>
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Machine Learning Considerations

The Power of ML

» Automatic feature extraction

Ensures relevant features are not missed

> Asympitotically optimizes performance

Provides useful/practical statistical power

> Interpolation in high-dimensional spaces

Combats the curse of dimensionality
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The Power of ML

Comes at a cost

» Automatic feature extraction

Ensures relevant features are not missed

Cannot easily convey what features are used

> Asympitotically optimizes performance
Provides useful/practical statistical power

Training is difficult with few global guarantees

> Interpolation in high-dimensional spaces

Combats the curse of dimensionality

Loses analytic understandability/tractability
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Machine Learning Considerations — in Particle Physics

The Power of ML

Comes at a cost

» Automatic feature extraction

Ensures relevant features are not missed

Cannot easily convey what features are used

> Asympitotically optimizes performance
Provides useful/practical statistical power

Training is difficult with few global guarantees

> Interpolation in high-dimensional spaces

Combats the curse of dimensionality

Loses analytic understandability/tractability
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» Available data

Data source, number of samples, labels, reliability

> Learning paradigm

Fully/weakly/un-supervised, classification/regression/generation

> Inputs and outputs

Size/shape, symmetries, dimensionality

» Model architecture

Expressibility, loss function, hyperparameters, validation/testing

> Deployment strategy

Model implementation, training/evaluation speed, uncertainties
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 Available data

Data source, number of samples, labels, reliability

> Learning paradigm

Fully/weakly/un-supervised, classification/regression/generation

IRV

Latent Space
1o

> Inputs and outputs

Size/shape, symmetries, dimensionality

gyl

> Model architecture =

Expressibility, loss function, hyperparameters, validation/testing

> Deployment strategy 1F Q

Model implementation, training/evaluation speed, uncertainties
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Thoughts on Machine Learning

|N SPI RE"" HEP literature machine learning or deep learning Q

Date of paper
> Machine learning will be essential in maximizing HEP potential
We should capitalize on the opportunity to optimize
ML is both a computational tool and a useful formalism/language
1972 2020
> High-energy PhySiCS can beneﬁt M|l HEPML-LivingReview has a thorough

and organized list of papers

e.g. EFNs are weighted deep sets, EFN2/PFN2 will have broader applications
NSF Institute for Artificial Intelligence and Fundamental Interactions EFNL2-) ({1 = (Zz o (p ZZZ 2@ (), )

7

» Collaboration across traditional lines will enable success

Theorists, experimentalists, and ML experts all can and should contribute

» Computational best practices can be shared among fields

Software workflows, reproducible analyses, public datasets are critical

[Reviews of Modern Physics Cover December 2019
from Machine learning and the physical sciences]
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https://journals.aps.org/rmp/issues/91/4
https://doi.org/10.1103/RevModPhys.91.045002
https://iml-wg.github.io/HEPML-LivingReview/

Future Development of Architectures, Algorithms, and Techniques

Yoronoi Constituent subtraction Apollonius

> Beyond single-particle point cloud architectures

Pairwise information known to be physically meaningful

“EFN2/PFN2” has greater expressivity for tagging and unfolding

> EM D'inSPired teChniqueS f‘or theory and eXPeriment Pileup subtraction methods on example jet from CMS Open Data

(More in backup)

New and better grooming and pileup mitigation techniques for LHC and beyond

Bootstrap “event space” to “‘theory space”

> Public datasets provide rich context for testing new methods

Novel search strategies can be tried directly (e.g. dimuon resonances with pT cut)

, . o . . Cartoon of “theory space” (More in backup)
Data preservation critical for maximizing scientific benefit (e.g. ALEPH e*e- data)

> Opportunities pursue novel investigation strategies in HEP

Weighted cross sections probe physics differently than traditional observables

e.g. energy-energy correlators, which utilize CFT techniques for QCD calculations A B A o A
(O£(E()OY)  (OE()E()E(i)OT) (O€ (7)€ (7)€ (7y)E () O)

Correlations of energy flow operators on celestial sphere

Patrick Komiske — Optimizing Particle Physics with Machine Learning (More in backup)
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Training On Data

[Metodiev, Nachman, Thaler, JHEP 2017;

PTK, Metodiev, Nachman, Schwartz, PRD 2018;
Metodiev, Thaler, PRL 2018;

PTK, Metodiey, Thaler, JHEP 2018]

35.9 b (13 TeV)
087 T et - ‘
/__I .E 107 CMS ¢ Data n Multijel
R e == o e e o 5 o5 | TS 2 10° Wi M
- ——F—= - - s ., tib ti2b
085187 ___}== __q 2 o 10 o i [7] Small bkgs
_- I—”I‘-—I— o EFPs: Extracted ROCs 108 % Sat uncert
0.84 - r | P”L__I——— = 0.6 9 PyTHIA 8.230, /5 = 14 TeV
O I’”I-__ § R =04, pr € [500,550] GeV 105
E: 083 n // %0 4
’ < 10
M (0.4 {4 = Truth :
0.82 7 — =00 k3 EFPs Extracted |‘ 107
0.8] - — f1 =0.1 § — == (CNN Extracted ! 102 l
. — =02 =024 ~7° Soft Drop Multiplicity nsp Extracted || 10 :
0.80 - —— ' CWoLa —_— 1 =0.3 N-subjettiness 7'2(6 =Y Extracted || :' l l l l ol by
- { LLP — f1 =04 - == Jet Mass m Extracted “ i Ayt o l
0-79 I I 1 1 1 1 1 1 1 I O-O 1 | | | |
100k 200k 300k 400k 500k 600k 700k 800k 900k 1M 0.0 0.2 0.4 0.6 0.8 1.0 - .0,y * e e
aenvevege 2SN Dl T N S e
Number of Training Samples Quark Jet Signal Efficiency e eteaies
0 02 04 06
CWola BDT
CWola can be used to train high-dimensional Classifiers can be calibrated with
classifiers on mixed samples without labels topic modeling CWola used to train BDT in CMS data

[CMS, PLB 2020]
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https://arxiv.org/abs/1708.02949
https://arxiv.org/abs/1801.10158
https://arxiv.org/abs/1802.00008
https://arxiv.org/abs/1809.01140
https://arxiv.org/abs/1909.05306

Statistical Ensembles of Events

Events / GeV

Data - Fit

4500
4000
3500
3000
2500
2000
1500
1000

500

200

-200

100 110 120 130 140 150

Histograms show the distribution of events according to some particular feature

Vs =7 TeV j Ldt=0.02fb " Apr 18,2011

ATLAS Preliminary
H—yy channel

O
a2
o

— Background-only

160

M., [GeV]

Patrick Komiske — Optimizing Particle Physics with Machine Learning

57



Statistical Ensembles of Events

4500

4000

Events / GeV

3500
3000
2500
2000
1500
1000

500

Data - Fit

-200

100

200

0

Histograms show the distribution of events according to some particular feature

III|IIII|IIII|III||IIIIIIIII|IIII|IIII|IIII|II

O
a2
o

Vs =7 TeV j Ldt=0.02fb " Apr 18,2011

— Background-only

ATLAS Preliminary

H—yy channel

IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|I

110

120

130

140

150 160
M., [GeV]

Discovering the Higgs boson from two photons
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Statistical Ensembles of Events

Histograms show the distribution of events according to some particular feature

- —~ — —— ——
3 4900 : -0021” E 5 OOOOOOOQ:
O - V§-7TerLdt_0.02fb Apr 18,2011 = _ (D GCHEOCOOCHE)
§ “°%F E | OOOOOOGE
5 L - = | Ol0000680®
a3 minary 5 0.4 OOOOOOOO
. ATLAS Proiminary = 3 04 HDOOOOOOO:
3000 H->yy channel — 2| OOOOO®OO®
2500 = S S T CMS 2011 Open Data
2000 - = § 0.3 F AKS Jets, Ipet] < 1.9 -
= = 75! B Pt € [399,401] GeV _
1500 [— — 5 CHS, pZF© > 1 GeV, Tracks |
= = 2 Rotated, Scaled to 400 GeV -
1000 [— — O 0.9 -
= = =
500 — — g
[ — ¥
- A S T o 5
° A
S 0
-200 _. S I S S S RS S S S R S S S I SR S S SR R S S .— O O - 1 1 1
100 110 120 130 140 15I(\)/1 G \1/]60 0 20 40 60 R0 100 120
. [Ge
Track Mass myack |GeV]
Discovering the Higgs boson from two photons Showing events by the combined “mass” of their charged particles
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Infrared and Collinear (IRC) Safety

QCD has soft and collinear divergences associated with gluon radiation

2, . dfd- C,=Cp=4/3
Pi_iq > a
f666§. Wivig=—"Carg 0 _ 0, =3

Infrared (IR) safety — observable is unchanged by adding a soft particle

Collinear (C) safety — observable is unchanged by a collinear splitting

e — 0 1 — )\ A\

Patrick Komiske — Optimizing Particle Physics with Machine Learning (More in backup)
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Infrared and Collinear (IRC) Safety

QCD has soft and collinear divergences associated with gluon radiation

2, . dfd- C,=Cp=4/3
Pi_iq > a
(666§. Wivig=—"Carg 0 _ 0, =3

Infrared (IR) safety — observable is unchanged by adding a soft particle

Collinear (C) safety — observable is unchanged by a collinear splitting

e — ( 1 — )\ A\

IRC Safety = EMD Continuity™

[PTK, Metodiev, Thaler, JHEP 2020]

Classic € — 0 definition of continuity in metric topology

*on all but a negligible sett of events

fa negligible set is one that contains no positive-radius EMD-ball

Patrick Komiske — Optimizing Particle Physics with Machine Learning (More in backup)

An observable O is EMD continuous at an event £ if, for
any € > 0, there exists a § > 0 such that for all events £:

EMD(E,E) <6 = |0E&)-0(E)|<e



https://arxiv.org/abs/2004.04159

Energy Flow Methods

Patrick Komiske — Optimizing Particle Physics with Machine Learning
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Energy Flow Polynomials (EFPs)

[PTK, Metodiev, Thaler, JHEP 2018]

Obtained via systematically expanding in energies and angles

EFPs are multiparticle correlators

M M
ZZ% H Hzgzk

11=1 inv=1 (7,k)eG

AN

I vertex <> energy factor

edge <> pairwise angle |

— 0.

Zk’il %

M
N\ N\ N\ N\ N\ 2
- > y > y > y > P > _ ~i1 %3 %13 %ig %5 OiviyVigisOiyig0iyisViyis 07,
11=119=113=114=115=1

Any |IRC-safe observable & is a
linear combination of EFPs!

Geg
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Definition of energy factor and pairwise angular distance
By
Pi Puj

V &

PTi 2 L 2 2
Dz = 0;; = 2n;njy, =2 ~ (Yi —¥;)" + (0i — @;
pp > 1y ij L — ( i)+ j)
E; 2 o It P Piu
Organized by number of edges d
Degree Connected Multigraphs

S ~ Z sqacEFPqs, G a set of multigraphs

d=10( a

[
- IA
| AAAN
@ NAINO AN
f/\/&{\m\.ﬂ\ﬁ
| AAAANSG A
/\H A. N'Qw{\u%\\
AR
et O

d

Il
oo

d=4

d=9
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Energy Flow Moments (EFMs)

L= “n. =
0, \/an. n;,, P =72 removes square root

Factors of nl’“‘ can be organized in optimal way

' EFM, is a little group tensor with v indices |

M
1y H1 Hoo
THY e = Zinkt-oon

1 7
1=1

v 01 2 3 4 5
(d=4) 1 4 10 20 35 56 &4

components

TI1I2 Jv — 20/2@j1j2°°°jv

spatial e*e- EFMs linearized sphericity tensors
[Donoghue, Low, Pi, PRD 1979]

M M M

— . . . 2 2 . .
o j ), j ), j 7 211Z122139’51i29i1i38@223

11=119=113=1

M M M
_ab E : oa, By, 0 E oo , € E . . .
— 2 Z/Ll nzlnzlnzlnzl Z’LQ nZ2an12/8n,i2 ZzgnzsfynfLS(snzge

11=1 10=1 i3=1

\ . ' \\ 7 \\ 7/

[PTK, Metodiey, Thaler, PRD 2020]

~" ~ ~

TaBvys Iaﬁe Tyse

Naively O(M?) EFP shown to be O(M)
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All =2 EFPs are O(M)

o ECF%ZZ) are all O(M)
o Dz(ﬁ =2) Cz(ﬁ =2) are O(M)

EFMs result from cutting edges of EFP

12 Iaﬁe
a € ’ ﬂ ¢
— ¥ p €
— y y%
il bo) i3 Ia5’75 0 0 I 5
YO€
EFP contractions of EFMs

(See backup for more on understanding linear redundancies and
counting superstring amplitudes with EFMs)
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https://doi.org/10.1103/PhysRevD.101.036019
https://doi.org/10.1103/PhysRevD.20.2759

Understanding Linear Redundancies via EFMs

Linear redundancies among EFPs are troublesome

Studying coefficients of linear fit difficult O = Z sqacEFPq

Examples of redundancies

in 3 or fewer spacetime dimensions

_ 7B d T
- . 0 =1 T 70T}

in 4 or fewer spacetime dimensions

ozei fs/\o 0 =1}, T)T)T5T;
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]

[PTK, Metodiev, Thaler, PRD 2020]

How to obtain a tensor identity

' Consider tensor over n dimensional vector space |

Antisymmetrize m > n indices

Result is zero because any assignment of n
possible values to m slots has a repetition

T = (

bg[cl -Com |

Bonus: all tensor identities up to ones governed
by existing symmetries take above form

[Sneddon, Journal of Mathematical Physics]

In ete- there are additional relations due to

’]’LM — (1’/&),“ — IOle---MU _ \/51':“1“',“@

(

See backup for more on these “ " relations
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https://aip.scitation.org/doi/10.1063/1.532630
https://doi.org/10.1103/PhysRevD.101.036019

New OEIS Entries!

Counting Superstring Amplitudes

A307317,A307316

Constructing a basis of amplitudes — how large is it? Leafless Multigraphs

: Connected All
[Boels, 1304.7918; OEIS A226919] I Edges d A307317 A307316
non-isomorphic multigraph " ; (1) (1)
| 3 2 2
Q:What is the number of symmetric polynomials of degree d 1 1 5
in kinematic variables up to momentum conservation? 2 22 ;}l
]I ﬂ 7 68 87
8 217 279
02 _on o M 9 718 897
Y B o:ZpH:zM: 10 2553 3129
pairwise angular distance — ¢ 11 9574 11 458

1= o
12 38 005 44 576
13 157306 181071
A:Same as the number of non-isomorphic multigraphs 14 679682 770237
with no leaves (vertices of valency one) b 3047099 3407352
Y 16 14150278 15641159

Bolded values previously unknown

Patrick Komiske — Optimizing Particle Physics with Machine Learning
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https://arxiv.org/abs/1304.7918
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https://oeis.org/A307317
https://oeis.org/A307316

Machine Learning for Point Clouds — Deep Sets

A general permutation-symmetric function is additive in a latent space

Deep Sets

Manzil Zaheer'?, Satwik Kottur', Siamak Ravanbhakhsh’,
Barnabas Péczos', Ruslan Salakhutdinov', Alexander J Smola'-?
I Carnegie Mellon University 2 Amazon Web Services

Deep Sets Theorem [63]. Let X C RY be compact, X C 2% be the space of sets with bounded
cardinality of elements in X, and ¥ C R be a bounded interval. Consider a continuous
function f : X — Y that is invariant under permutations of its inputs, i.e. f(xy,...,xp) =
f(@r)s s Trary) for all x; € X and m € Spr. Then there exists a sufficiently large integer

¢ and continuous functions ® : X — R, F : RY — Y such that the following holds to an

arbitrarily good approximation:!

M

f{z1,..oom}) =F | Y ®(x;)

1=1
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[1703.06114]

64


https://arxiv.org/abs/1703.06114

Machine Learning for Point Clouds — Deep Sets

A general permutation-symmetric function is additive in a latent space

Deep Sets [1703.061 14]

Manzil Zaheer'?, Satwik Kottur', Siamak Ravanbhakhsh’,
Barnabas Péczos', Ruslan Salakhutdinov!, Alexander J Smola'-?

I Carnegie Mellon University 2 Amazon Web Services /\ Variable len gth

/ —>
Feature Space Deep Sets Theorem [63]. Let|X C RY be compact,| X C 2% be the space of sets|with bounded

cardinality of elements in X, and ¥ C R be a bounded interval. Consider a continuous
function f : X — Y that is invariant under permutations of its inputs, i.e. f(xy,...,xp) =

/‘* f(@r)s s Trary) for all x; € X and w € Syl Then there exists a sufficiently large integer
. 0 and continuous functions ® : X —|RY F :|RfY|— Y such that the following holds to an
Permutation

1
invariance

arbitrarily good approrimation: -~

Latent space

General parametrization for a function of sets
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Infrared and Collinear (IRC) Safety

QCD has soft and collinear diversences assaciated with eluon radiation

Collinear (C) safety — ¢

—

dP;.

— ol

C safety is a statement of linearity in energy
and continuity in geometry

Theorem: Any IRC-safe observable can be written in the
following form:

fUPY,. oyt =F (Z (f)(ﬁz')) , Di = (Yi» Di)-

Proof: In 1810.05165. L
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https://arxiv.org/abs/1810.05165

Infrared and Collinear (IRC) Safety

QCD has soft and collinear diversences assaciated with eluon radiation

dP;.

— ol

Collinear (C) safety — ¢

|RC Saft

[PTK, Metodiey, Thaler, JHEP 2020]

C safety is a statement of linearity in energy
and continuity in geometry

Theorem: Any IRC-safe observable can be written in the
following form:

fUPY,. oyt =F (Z (f)(ﬁz')) , Di = (Yi» Di)-

Proof: In 1810.05165. L

ntinuity in metric topology

% inuous at an event & if, for
on all ,
: such that for all events &£’:

fa negligible set is one that contains no positive-radius EMD-ball
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EMD(E,E) < 6

—  |OE) = 0OE)| <«

65


https://arxiv.org/abs/2004.04159
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Energy Flow Network Visualization

Filter 2

Jet images as EFN filters

Filter 3

Filter 6

Filter 4

Filter 7

Filter 10

Filter 8

Filter 1
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2 Filter 5

20
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“ =
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Filter 13

Filter 11

Filter 14

Filter 12
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Filter 15

Translated Rapidity y

Filter 16

1.0

0.8

0.6

- 0.4

- 0.2

0.0

Translated Azimuthal Angle ¢

Filter 1: yo ¢O

2

Filter 5: yl gbo

—

.

Filter 9: y2 ¢O

]
I

Filter 13: y3 gbo

I
ﬁ

Visualize EFN observables as 2D filters in the translated rapidity-azimuth plane

Moments as EFN filters

Filter 2: yO ¢1

—

Filter 6: yl gbl

+

Filter 10: yqul

[

Filter 14: y3 gi)l

[

Filter 3: yO gbz

Filter 7: yl ¢2

ilter 11: y2 2

By
©-

TR
W

©-
N

ilter 15: y3

By

B |

-
L

Translated Rapidity y

Filter 4: yO q53

I

Filter 8: yl qb3

SR

Filter 12: y2 qb3

r)

b

Filter 16: y3 ¢3

S

L >

1.00

0.75

- 0.50

- 0.25

- 0.00

- —0.25

—0.50

—0.75

—1.00

[Donoghue, Low, Pi, PRD 1979; Gur-Ari, Papucci, Perez, 1 101.2905;
PTK, Metodiey, Thaler, PRD 2020]
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https://arxiv.org/abs/1101.2905
https://arxiv.org/abs/1911.04491

Quark vs. Gluon: Visualizing EFN Filters in the Emission Plane

Transform to polar coordinates and take logarithm of the radius

A
J

Log Radial Distance In

Azimuthal Angle ¢
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Quark vs. Gluon: Extracting New Analytic Observables

EFN (£ = 2) has approximately radially symmetric filters

Filter 1

R
ASS
%;D R/2
<
=
=
=
i 0 -
N
<
=
Q
=
g —R/2
-

_R 1 1 1
R ~R/2 0 R/2

Translated Rapidity y

M

O = Z 2 ©1(0;)

1=1

1.0

- 0.4

- 0.2

0.0

Translated Azimuthal Angle ¢

R

=y
~
(N}

e}

“R/2

—-R

Filter 2

—R/2 0 R/2
Translated Rapidity y

M

Oy = Z zi ©2(0;)

1=1

Separate soft and collinear phase space regions,
e.g. collinear drop

[Chien, Stewart, ]HEP 2020]
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Fit analytic forms:

Radial Profile ®(0)

Average of radial slices

EFN2: Quark vs. Gluon
1.0 PyTHIA 8.230, /s = 14 TeV
R = 0.4, pr € [500,550] GeV
0.8 7
0.6 -
0.4 -
0.2 - B Learned Filter ®4(6)
B Learned Filter ®5(0)
—— Closed-Form ®(4)
0.0 | | |
0 R/8 R/4 3R/8 R/2
Radial Position 6
M
_ 02 /2
A, = E zie di/mo,
1=1
M
Bﬁ’@ = E Zi 111(1 -+ 6(6’2 — 7“1))@(92 — 7“1)
1=1

68


https://arxiv.org/abs/1907.11107

Quark vs. Gluon: Extracting New Analytic Observables

Visualize F in the two dimensional (O, O;) phase space

Learned Observables Closed-Form Observables
0.6 1.00 0.6 1.00
EFNs: Quark vs. Gluon EFNs: Quark vs. Gluon
PYTHIA 8.230, /s = 14 TeV PYTHIA 8.230, /s = 14 TeV
0.9 - R = 0.4, pr € [500,550] GeV .86 0.07 & R = 0.4, pr € [500,550] GeV 086
0.4 - , - 0.71 0.4 - - 0.71
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Squared distance from a point:

C(A,B)=(A—ay)® + (B — by)*
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Quark vs. Gluon: Benchmarking New Analytic Observables

A, B observables individually
comparable to angularities

C(A, B) vastly exceeds multivariate
combination (BDT) of angularities

Extracted C'(A, B) is comparable to EFN (£ =
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Iterated Bayesian Unfolding (IBU)

[Richardson, JOSA 1972; Lucy,A] 1974; D’Agostini, NIMPA 1995]

Consider a situation with two particle-level bins and two detector-level bins
Maximum likelihood, histogram-based unfolding

method for a small number of observables 1 1 ;L
0) | 2 12 . 2
1) = m; = R, =
’: ] l l l lj O l
| Choose observable(s) and binning at detector-level and particle-level 2 i 2 ; 2 i
measured distribution: 71); = Pr(measure 1) | Uniform prior Bins are measured equally  Bin | reconstructed perfectly
true distribution: tg.O) = Pr(truth is 7) Bin 2 reconstructed equally

| Calculate response matrix R;; from generated/simulated pairs of events

R;; = Pr(measure ¢ | truth is j)

t Calculate new particle-level distribution using Bayes’ theorem

t§n) = ZPr (truth,,_1 is j | measure i) x Pr(measure %)
' (n—1)
: th]

k

i |terate procedure to remove dependence on prior
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Iterated Bayesian Unfolding (IBU)

[Richardson, JOSA 1972; Lucy,A] 1974; D’Agostini, NIMPA [995]

Consider a situation with two particle-level bins and two detector-level bins
Maximum likelihood, histogram-based unfolding

method for a small number of observables 1 1 ;L
0 _ |2 12 . 2
t.( = m. = R.. =
| Choose observable(s) and binning at detector-level and particle-level 2 i 2 i 2 ij
measured distribution: 77, = Pr(measure 1) | Uniform prior Bins are measured equally  Bin | reconstructed perfectly
true distribution: tg.O) = Pr(truth is 7) Bin 2 reconstructed equally
(1 1)
f Calculate response matrix R;; from generated/simulated pairs of events ” T 1
{ 0 — —
| o (1) Yy 2
R;; = Pr(measure ¢ | truth is j) 6 = Z - X1,
| i <Z Z>i 2/
I
- Calculate new particle-level distribution using Bayes’ theorem '. After one iteration

t§n) = ZPr (truth,,_1 is j | measure i) x Pr(measure %)
' (n—1)
: th]

k

i |terate procedure to remove dependence on prior
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Iterated Bayesian Unfolding (IBU)

[Richardson, JOSA 1972; Lucy,A] 1974; D’Agostini, NIMPA [995]

Consider a situation with two particle-level bins and two detector-level bins
Maximum likelihood, histogram-based unfolding

method for a small number of observables 1 1 ;L
0) | 2 12 . 2
1Y) = m; = R, =
,‘ It N i~y 1
| Choose observable(s) and binning at detector-level and particle-level 2 j 2 ; 2 i
measured distribution: 71); = Pr(measure 1) | Uniform prior Bins are measured equally  Bin | reconstructed perfectly
true distribution: tg.O) = Pr(truth is 7) Bin 2 reconstructed equally
,  L il g
| Calculate response matrix R;; from generated/simulated pairs of events - | 5 X 3 X 3 + |
| o 4y 2 1/3 3
R;; = Pr(measure ¢ | truth is j) ) = Z i x| = =
" J (2 l) 1 lxixl | 1)(4)(1 2
l o4 2/, 2773 74 2 4 3),
 Calculate new particle-level distribution using Bayes’ theorem ', After one iteration 176 172

t§n) = ZPr (truth,,_1 is j | measure i) x Pr(measure %)
' (n—1)
: thj

k

i |terate procedure to remove dependence on prior
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Iterated Bayesian Unfolding (IBU)

[Richardson, JOSA 1972; Lucy,A] 1974; D’Agostini, NIMPA [995]

Consider a situation with two particle-level bins and two detector-level bins
Maximum likelihood, histogram-based unfolding

method for a small number of observables 1 1 L
0) | 2 12 2
1) = m;, = R, =
| A NN iT 1y L
| Choose observable(s) and binning at detector-level and particle-level 2 i 2 ; 2 i
measured distribution: 71); = Pr(measure 1) | Uniform prior Bins are measured equally  Bin | reconstructed perfectly
true distribution: tg.O) = Pr(truth is 7) Bin 2 reconstructed equally
\
| B LxEIX=40
| Calculate response matrix R;; from generated/simulated pairs of events . 0 3 o) 1
| 0o L 1 . - L
. . N Y 1/3 3
R;; = Pr(measure ¢ | truth is j) ) = Z i x| = —
‘ oo \ww) \2) 12XEXE T B
Pl = j
 Calculate new particle-level distribution using Bayes’ theorem ', After one iteration 176 172
t§n) = ZPr truthn 1 is j | measure 7) X Pr(measure i) | S
. Correct truth distribution
_ 7 | { I n obtained as n = oo
Z (n—1) X : n+1 2n+1)
Rt n 1 1
,A 0 -
| j (n) \ 2t D) ij 2 n+2 0
i Iterate procedure to remove dependence on prior g [ = Z X — —
' | J n+2 n l n+ 1 1 .
l 2m+1)  2n+1) ). 2 n+2 1 J
J

At the nth iteration
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IBU as Reweighting
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[Richardson, JOSA 1972; Lucy,A] 1974; D’Agostini, NIMPA [995]

Consider a situation with two particle-level bins and two detector-level bins

S
1

10 =
J

D= o] —

J

Uniform prior

l

After one iteration

( 1 n \
n+1 2n+1)
n
\ 0 2(n+1))ij
X

)

n+?2 n
l 2m+1) 2+ 1) l.

At the nth jteration

1
2
1
2

Bins are measured equally

1
6'(1)22 <\3 1>ij X i -
i 2

=
1

i

0

l ]

= o] —

Bin | reconstructed perfectly
Bin 2 reconstructed equally

1 4 1
zX;XEJ-FO

1
1/3 13
1,41 1 1l |2
2X3X4'2X4X4 3j
1/6 12
Correct truth distribution
obtained as 7 — ©©
1
n+?2 O
— —
n+1 1 .
. n+27]. J
! J
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IBU as Reweighting

prior
172 1/2
Bin | Bin 2
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[Richardson, JOSA 1972; Lucy,A] 1974; D’Agostini, NIMPA [995]

Consider a situation with two particle-level bins and two detector-level bins

0) —
i i

D= o] —
= o] —

0
J [ i

Uniform prior Bins are measured equally  Bin | reconstructed perfectly

Bin 2 reconstructed equally

1

4 1 4 1

4 — —_ —

| 2X3X2+O
4

1 \ ,
4/ 5 1/3
6'(1)22 R ? 1 4 1 1 |~
. — — — | =
! ( >i 2 2X3X4'k2X4X44 ;

1/6 1/2

After one iteration

Correct truth distribution

(1 no) obtained as n — o0
n+1 2(n+1)
=3 = ()
j n+2 n l n+1 1 .
l <2(n+1) 2(n+1))i 2 ; n+2 ; J

At the nth jteration
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IBU as Reweighting

prior response |
3/4
172 1/2
| /4 —> |/2
detector -_

Bin | Bin?2 Bin|l Bin?2
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[Richardson, JOSA 1972; Lucy,A] 1974; D’Agostini, NIMPA [995]

Consider a situation with two particle-level bins and two detector-level bins

0) —
i i

D= )=

0
J [ i
Uniform prior Bins are measured equally  Bin | reconstructed perfectly

Bin 2 reconstructed equally
1 4 1
> X 3 X E + 0

1 .
\ i P 1/3
6'(1) = Z 301 — X ? 1 4 1 1 1
. — — — | =
l ( ) 5 2x3x4.2x4x{ j

1/6 1/2

A= &=

N~

4 4
I

l

After one iteration

Correct truth distribution

(1 no) obtained as n — o0
n+1 2(n+1)
=3 = ()
j n+2 n l n+1 1 .
l <2(n+1) 2(n+1))i 2 ; n+2 ; J

At the nth jteration
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IBU as Reweighting

prior response |
3/4
|/2 /2
|/4 —> 1/2
detector -_
Bin|l Bin?2 Bin|l Bin?2
but | actually
detected ...
/2 /2
Bin | Bin2
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[Richardson, JOSA 1972; Lucy,A] 1974; D’Agostini, NIMPA [995]

Consider a situation with two particle-level bins and two detector-level bins

0) —
i i

D= )=

0
J [ i
Uniform prior Bins are measured equally  Bin | reconstructed perfectly

Bin 2 reconstructed equally
1 4 1
> X 3 X E + 0

1 .
\ i P 1/3
6'(1) = Z 301 — X ? 1 4 1 1 1
. — — — | =
l ( ) 5 2x3x4.2x4x{ j

1/6 1/2

A= &=

N~

4 4
I

l

After one iteration

Correct truth distribution

(1 no) obtained as n — o0
n+1 2(n+1)
=3 = ()
j n+2 n l n+1 1 .
l <2(n+1) 2(n+1))i 2 ; n+2 ; J

At the nth jteration
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IBU as Reweighting

prior response |
3/4
112 1/2
|/4 —> 1/2
detector -_
Bin| Bin?2 Bin | Bin 2
reweight bins to match but | actually
detected ...
< 2 %) 12 12
Bin | Bin 2
Bin |  Bin 2
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[Richardson, JOSA 1972; Lucy,A] 1974; D’Agostini, NIMPA [995]

Consider a situation with two particle-level bins and two detector-level bins

0) —
i i

D= )=

0
J [ i
Uniform prior Bins are measured equally  Bin | reconstructed perfectly

Bin 2 reconstructed equally
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> X 3 X E + 0
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After one iteration

Correct truth distribution

(1 no) obtained as n — o0
n+1 2(n+1)
=3 = ()
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IBU as Reweighting

prior response |
3/4
112 1/2
|/4 —> 1/2
detector -_
Bin| Bin?2 Bin | Bin 2
reweight bins to match but | actually
detected ...
< 2 %) 12 12
Bin | Bin 2
Bin |  Bin 2

pull reweighting back
to truth level
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1/3 1/2

Bin | Bin 2
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[Richardson, JOSA 1972; Lucy,A] 1974; D’Agostini, NIMPA 1995]

Consider a situation with two particle-level bins and two detector-level bins

1 1 1 L
0) | 2 12 . 2
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] l l l lj O l
2 ). 2 ). 2 )..
J ! I
Uniform prior Bins are measured equally  Bin | reconstructed perfectly

Bin 2 reconstructed equally
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After one iteration

Correct truth distribution
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IBU as Reweighting

prior response |
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112 1/2
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detector -_
Bin| Bin?2 Bin | Bin 2
reweight bins to match but | actually
detected ...
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Bin | Bin 2
Bin |  Bin 2

pull reweighting back new estimate of truth

to truth level
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[Richardson, JOSA 1972; Lucy,A] 1974; D’Agostini, NIMPA 1995]

Consider a situation with two particle-level bins and two detector-level bins
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IBU as Reweighting
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[Richardson, JOSA 1972; Lucy,A] 1974; D’Agostini, NIMPA 1995]

Consider a situation with two particle-level bins and two detector-level bins
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OmniFold Results by Event Representation %%

User is free to choose event representation in the OmniFold procedure

Observable

OMNIFOLD - full phase space information | Method w | Inp | m
OMNIFOLD 0.53
| MuLTIFOLD
. . UNIFOLD 0.59 | 1.11 :
MULTIFOLD — multiple observables 5O e R
‘ i Data 142 | 11.1 | 3.76
« Generation 19 20.8 | 3.84

UNIFOLD — single observable, essentially unbinned IBU | | L Nesubjrati |

groomed mass

Evaluate performance using
triangular discriminator

OMNIFOLD/MULTIFOLD outperforms IBU on all observables! Alp,q) = ~ / ax PN —aN)” s

2 p(A) +q(N)

Single MULTIFOLD training ~ UNIFOLD is similar to or
based on all six observables outperforms IBU
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Additional OmniFolded Distributions

Normalized Cross Section

Ratio to
Truth
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Ratio to

Truth

Normalized Cross Section
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easier to unfold
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Groomed Jet Momentum Fraction z,

Z, remarkably stable

g
under choice of method

zZ, = P fraction of first splitting to pass soft drop
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OmniFold Etymology

The Mountain sat upon the Plain
In his tremendous Chair —

His observation omnifold,

His inquest, everywhere —

The Seasons played around his knees
Like Children round a sire —
Grandfather of the Days is He

Of Dawn, the Ancestor —

Emily Dickinson, #975
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Energy Mover’s Distance
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N-particle Manifolds in the Space of Events

[PTK, Metodiev, Thaler, JHEP 2020]

N
PN = set of all N-particle configurations = {Z Eio(n—ng) | By > 0}
i=1

Py ODOPn_1D:---DP3DPDF,

by soft and collinear limits

m Uniform event, not contained in any Py

Patrick Komiske — Machine Learning for High-Energy Collider Physics

/8


https://arxiv.org/abs/2004.04159

N-particle Manifolds in the Space of Events

[PTK, Metodiev, Thaler, JHEP 2020]

N
PN = set of all N-particle configurations = {Z Eio(n—ng) | By > 0}
i=1

P1 : manifold of events with one particle

Py ODOPn_1D:---DP3DPDF,

by soft and collinear limits

@ Uniform event, not contained in any Py
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N-particle Manifolds in the Space of Events

[PTK, Metodiev, Thaler, JHEP 2020]

N
PN = set of all N-particle configurations = {Z Eio(n—ng) | By > 0}
i=1

P1 : manifold of events with one particle

P2 : manifold of events with two particles

Py ODOPn_1D:---DP3DPDF,

by soft and collinear limits

m Uniform event, not contained in any Py
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N-particle Manifolds in the Space of Events

[PTK, Metodiev, Thaler, JHEP 2020]

N
PN = set of all N-particle configurations = {Z Eio(n—ng) | By > 0}
i=1

P1 : manifold of events with one particle

P2 : manifold of events with two particles

P3 : manifold of events with three particles

Py ODOPn_1D:---DP3DPDF,

by soft and collinear limits

m Uniform event, not contained in any Py
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Visualizing Geometry in the Space of Events

t-Distributed Stochastic Neighbor Embedding (t-SNE)
MNIST handwritten digits
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Visualizing Geometry in the Space of Events

t-Distributed Stochastic Neighbor Embedding (t-SNE)

MNIST handwritten digits
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[L. van der Maaten, G. Hinton, JMLR 2008 ]

Patrick Komiske — Machine Learning for High-Energy Collider Physics

Geometric space of W jets

one prong"

[PTK, Metodiev, Thaler, PRL 2019]

Constraints: W Mass and
¢ = 0 preprocessing

v

PadUE[Eq

Gray contours represent the density of jets

Each circle is a particular W jet

79


https://doi.org/10.1103/PhysRevLett.123.041801

Visualizing Geometry in CMS Open Data

t-SNE Manifold Dimension 2

ONi©

CHS, Tracks, p2FC > 1 GeV
Scaled to 400 GeV, Rotated

CMS 2011 Open Data
AK5 Jets, |net] < 1.9

o plet € [399,401] GeV

t-SNE Manifold Dimension 1

QCD produces mostly one-pronged jets but has long tails
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[PTK, Mastandrea, Metodiev, Naik, Thaler, PRD 2019; code and datasets at energyflow.network]
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Visualizing Geometry in CMS Open Data

[PTK, Mastandrea, Metodiev, Naik, Thaler, PRD 2019; code and datasets at energyflow.network]

1.0 e L R L L
AKS Jete, ot < 16 51 (DOOOOOOOOOOW:
AK5 Jets, [pP°t] < 1.9 i 38323333
€ [399,401) GV = [OOOOOOOOOOOE
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3 e S [ OOOOOOOOOOOE:
| o _ 2 [OO
g % S T CMS 2011 Open Data
a ’ 0.6 o £ 03F AKS5 Jets, |np'et| < 1.9 -
= | O z o3 ___ pist € [399,401] GeV
IS \ S A CHS, pZFC > 1 GeV, Tracks |
i= £ 2 Rotated, Scaled to 400 GeV -
< 0.4 g < 0.2 i
= = &
- =
N —
= 0.2 %: 0.1
(»)
CHS, Tracks, pl;FC > 1 Ge\@
Scaled to 400 GeV, Rotated

0.0 0.0 —
t-SNE Manifold Dimension 1 0 20 40 60 30 100 120
Track Mass myrack |GeV]

QCD produces mostly one-pronged jets but has long tails 4 most representative jets (medoids) shown for each bin
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Quantifying Event-Space Manifolds

Correlation dimension: how does the # of
elements within a ball of size Q change?

[Grassberger, Procaccia, PRL 1983; PTK, Metodiey, Thaler, PRL 2019]
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Quantifying Event-Space Manifolds

dim(Q) = Q% In S::@(EMD(EZ-,E/J') < Q)
v

Correlation dimension: how does the # of
elements within a ball of size Q change?

[Grassberger, Procaccia, PRL 1983; PTK, Metodiey, Thaler, PRL 2019]
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Quantifying Event-Space Manifolds

@(El\/ﬂ:)(gz7 g/j) < Q)

=
=4
L
||
Q
Sl
=
-]
]

e
Correlation dimension: how does the # of ]
elements within a ball of size Q change?
8
dim = 1 a \_\xdim =12 EMD: Intrinsic Dimension
/o",. 7 PyYTHIA 8.235, /s = 14 TeV
>/ S R = 1.0, pr € [500,550] GeV
\ 7
N
\ 6 -
X = .. .
\ .% Top jets

o ) 357 .. " — W jets

/ .g “‘.. “t T . ““ “

- . // Q . ¢ munugst®

g/ o 4 -
S expect 3 + 1
; e O 3 -
\*/ =
dim — 0 dim =0 R Wte e Decays
d 2 B I I B DY “
dlm ° _ . “
Nneigh.(@) X Q — dlm(Q) — Qd@ In Nnelgh.(Q) expect 1 + 1 .
1 - )
Correlation dimension lessons:
Decays are "constant” dim. at low Q 0 ) T T T T T,
10 10 10

Energy Scale () (GeV)

[Grassberger, Procaccia, PRL 1983; PTK, Metodiey, Thaler, PRL 2019]
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Quantifying Event-Space Manifolds

Correlation dimension: how does the # of
elements within a ball of size Q change?

dim = 1  dim=2
xS

X
\
//)

dim — 0 " dim=0
. . d

Nneigh.(@) X lem — dlm(Q) — Q@ In Nneigh.(Q)

Correlation dimension lessons:

Decays are "constant” dim. at low Q
Complexity hierarchy: QCD <W <'Top
Fragmentation increases dim. at smaller scales
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*Preliminary LL calculation for QG jets in backup

Energy Scale (Q (GeV)

[Grassberger, Procaccia, PRL 1983; PTK, Metodiey, Thaler, PRL 2019]
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Quantifying Event-Space Manifolds

Correlation dimension: how does the # of
elements within a ball of size Q change?

7 i ..
/ ke,
\ /
\\ e
)\/
\
//
dim =0 7 dim=0
. . d
Nneigh.(@) X lem — dlm(Q) — Q@ In Nneigh.(Q)

Correlation dimension lessons:
Decays are "constant” dim. at low Q
Complexity hierarchy: QCD <W <'Top
Fragmentation increases dim. at smaller scales
Hadronization important around 20-30 GeV
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Energy Scale (Q (GeV)

[Grassberger, Procaccia, PRL 1983; PTK, Metodiey, Thaler, PRL 2019]
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More EMD Geometry — Continuity in the Space of Events

Patrick Komiske — Machine Learning for High-Energy Collider Physics

[PTK, Metodiev, Thaler, 2004.04159]

Classic € — 0 definition of continuity in a metric space

An observable O is EMD continuous at an event £ if, for
any € > 0, there exists a § > 0 such that for all events &’:

EMD(E,E) <6 = |0€)—-0(E)|<e
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More EMD Geometry — Continuity in the Space of Events

Patrick Komiske — Machine Learning for High-Energy Collider Physics

[PTK, Metodiev, Thaler, 2004.04159]

Classic € — 0 definition of continuity in a metric space

An observable O is EMD continuous at an event £ if, for
any € > 0, there exists a § > 0 such that for all events &’:

EMD(E,E) <6 = |0€)—-0(E)|<e

Towards a geometric definition of IRC Safety

IRC Safety = EMD Continuity™

*on all but a negligible sett of events

fa negligible set is one that contains no positive-radius EMD-ball

84
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Defining Observables via Event Space Geometry

[PTK, Metodiev, Thaler, 2004.04159]

Many common observables are distance of closest
approach from event to a specific manifold

— : /
O&) = Jnin EMDg r(&,E")
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Defining Observables via Event Space Geometry

[PTK, Metodiev, Thaler, 2004.04159]

Many common observables are distance of closest
approach from event to a specific manifold

— : /
O&) = Jnin EMDg r(&,E")

EMD variant for equal-energy events

M M’
EMDg(€,€") = lim RPEMDg r(E,€') = min_ Y Y fi;07;
R— 00 T 1fi; 20} Z.:fj:‘l
.................................... l Enforces equal energy (else infinity) on equal-energy events
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Defining Observables via Event Space Geometry

Patrick Komiske — Machine Learning for High-Energy Collider Physics

- : /
O(&) = Jnin EMDg r(&,E)

[PTK, Metodiev, Thaler, 2004.04159]
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Defining Observables via Event Space Geometry o) = iy FMPa.R(E, &)

[PTK, Metodiev, Thaler, 2004.04159]

Thrust, spherocity, isotropy™

Distance of closest approach
to a specific manifold

t(£) = min EMDs(&E,E)

EepPyh

s(£) = min EMD¢(&,&)
EepPyh

7PF)I(E) = uin EMDg (&, &)

[Farhi, PRL 1977; Georgi, Machacek, PRL 1977]
*New! [Cesarotti, Thaler, 2004.06125]
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Defining Observables via Event Space Geometry

Thrust, spherocity, isotropy™

Distance of closest approach
to a specific manifold

t(£) = min EMDs(&E,E)

EepPyh

s(£) = min EMD¢(&,&)
EepPyh

7PF)I(E) = uin EMDg (&, &)

[Farhi, PRL 1977; Georgi, Machacek, PRL 1977]
*New! [Cesarotti, Thaler, 2004.06125]
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N-jettiness

Minimum distance from event
to N-particle manifold

without beam region

(8) _ - /
Ty (&) = min EMDg(E, )

with constant beam distance R”

, R -
T (E) = Juin EMDg r(€, &)

[Brandt, Dahmen, Z. Phys 1979;
Stewart, Tackmann, Waalewijn, PRL 201 0]

- : /
O(&) = Jnin EMDg r(€,E&")

[PTK, Metodiev, Thaler, 2004.04159]
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Defining Observables via Event Space Geometry o) = iy FMPa.R(E, &)

[PTK, Metodiev, Thaler, 2004.04159]

Thrust, spherocity, isotropy™

Distance of closest approach
to a specific manifold

t(£) = min EMDs(&E,E)

EepPyh
s(£) = min EMD¢(&,&)
EepPyh
(8) — mi !
IV (E) (i EMDg(&,E7)

[Farhi, PRL 1977; Georgi, Machacek, PRL 1977]
*New! [Cesarotti, Thaler, 2004.06125]

Patrick Komiske — Machine Learning for High-Energy Collider Physics

N-jettiness

Minimum distance from event
to N-particle manifold

without beam region

(8) _ - /
Ty (&) = min EMDg(E, )

with constant beam distance R”

, R -
T (E) = Juin EMDg r(€, &)

[Brandt, Dahmen, Z. Phys 1979;
Stewart, Tackmann, Waalewijn, PRL 201 0]

N-subjettiness, angularities

Smallest distance from jet to
N-particle manifold

1

1

1

1

1

NS !
. % ’. 1
“‘“ 0. 1
* 1

*
% %
1
.
% 7_3 1
. * *
. . 1
. .
5 %, !
- 1
S e '
. %

. . ,

.
. % 1
T2 A :
. \¢ !
1

2 *
. (S 1
. -
< 1
. 3

. * 1
1
1
1

for recoil-free angularity

A\3(J) = min EMDg(J,.7")

J'€Pq
v ()= min EMDs(J,7")

[Ellis,Vermilion,Walsh, Hornig, Lee, [HEP 2010;
Thaler,Van Tilburg, [HEP 201 I, JHEP 2012]
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Jets in the Space of Events — The Closest N-particle Description of an M-particle Event

[PTK, Metodiev, Thaler, 2004.04159]
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Jets in the Space of Events — The Closest N-particle Description of an M-particle Event

[PTK, Metodiev, Thaler, 2004.04159]

Exclusive cone finding

XCone finds N jets by
minimizing N-jettiness

TN (€) = argmin EMDg (€, J)
JEPN

[Stewart, Tackmann, Thaler, Vermilion, Wilkason, JHEP 2015;
Thaler,Wilkason, JHEP 201 5]
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Jets in the Space of Events — The Closest N-particle Description of an M-particle Event

[PTK, Metodiev, Thaler, 2004.04159]

Exclusive cone finding Sequential recombination
XCone finds N jets by Iteratively merges particles or
minimizing N-jettiness identifies a jet

“destroying” energy
corresponds to identifying a jet

event with one fewer particle after one step

TInaw(€) = argmin EMDg g(€, )
JEPN

PR ey = argmin EMDg r(Enr, L 1)
55\4_16771\4_1

[Stewart, Tackmann, Thaler, Vermilion, Wilkason, JHEP 201 5; [Catani, Dokshitzer, Seymour, Webber, Nucl. Phys. B 1993;
Thaler, Wilkason, JHEP 2015] Ellis, Soper, PRD 1993;

Dokshitzer, Leder, Moretti, VWebber, [HEP 1997;
Patrick Komiske — Machine Learning for High-Energy Collider Physics Cacciari, Salam, Soyez, ]JHEP 2008] 87
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Perturbation Theory in the Space of Events

Patrick Komiske — Machine Learning for High-Energy Collider Physics

[PTK, Metodiev, Thaler, 2004.04159]

Infrared singularities of massless
gauge theories appear on each Py

r----------------
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Perturbation Theory in the Space of Events

[PTK, Metodiev, Thaler, 2004.04159]

Sudakov safety [Larkoski, Thaler; JHEP 2014; Larkoski, Marzani, Thaler, PRD 2015] Infrared singularities of massless
gauge theories appear on each Py

Some observables have discontinuities on Py for some N

A resummed IRC-safe companion can mitigate the divergences

p(OSudakOV) — /dOComp.p(OSudakOV‘OComp.)p(OComp.)

Event geometry suggests N-(sub)jettiness as universal companion

r----------------
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Perturbation Theory in the Space of Events

[PTK, Metodiev, Thaler, 2004.04159]

Sudakov safety [Larkoski, Thaler, JHEP 2014; Larkoski, Marzani, Thaler, PRD 201 5] Infrared singularities of massless
gauge theories appear on each Py

Some observables have discontinuities on Py for some N

A resummed IRC-safe companion can mitigate the divergences

p(OSudakOV) — /dOComp.p(OSudakOV‘OComp.)p(OComp.)

Event geometry suggests N-(sub)jettiness as universal companion

A

Fixed-order calculability [Sterman, PRD 1979; Banfi, Salam, Zanderighi, JHEP 2005]

Is a statement of integrability on each Py

EMD continuity must be upgraded to EMD-Holder continuity on each P

v

r----------------

OE) — 0"
1' — O O ---------------------------------------
ErE EMD(E, E7)¢ 7
Example: V(&) =Tz(€) (1 + 1nE(5)1/7'3(8)> is EMD continuous but not EMD Holder continuous (it is Sudakov safe)
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Hierarchy of IRC Safety Definitions

[PTK, Metodiev, Thaler, 2004.04159]

All Observables Comments

Multiplicity (3, 1) IR unsafe and C unsafe

Momentum Dispersion [65] (3=, E?) IR safe but C unsafe

Sphericity Tensor [66] (3, pf'pY) IR safe but C unsafe

Number of Non-Zero Calorimeter Deposits C safe but IR unsafe
All Observables

Defined on Energy Flows

Measurable at a collider

Pseudo-Multiplicity (min{NV | 7y = 0}) Robust to exact IR or C emissions

Infrared & Collinear Safe

Deﬁned on Energy FIOWS Jet Energy (3, E;) Disc. at jet boundary
Invariant to exact infrared & collinear emissions everywhere except a negligible set of events Heavy Jet Mass [67] Disc. at hemisphere boundary
Soft-Dropped Jet Mass [38, 68] Disc. at grooming threshold
Calorimeter Activity [69] (Ngs) Disc. at cell boundary
Infrared & Collinear Safe Sudakov Safe
EMD continuous everywhere except a negligible set of events Groomed Momentum Fraction [39] (z,) Disc. on 1-particle manifold
Jet Angularity Ratios [37] Disc. on 1-particle manifold

“IIIIIIIIIIIIIIIIIII...

N-subjettiness Ratios [47, 48] (Ty+1/7n)  Disc. on N-particle manifold

EMD Holder Continuous Sudakov Safe

Everywhere invariant to infinitesimal Discontinuous on some

V parameter [36] (Eq. (2.11)) Holder disc. on 3-particle manifold

EMD Holder Continuous Everywhere
Thrust [40, 41]

\d

L]
a
|
]
n
L J
L/

infrared & collinear emissions N-particle manifolds

YO0 0 A000000000000 0000000 Spherocity [42]

Angularities [70]

N-jettiness [44] (Tn)

C parameter [71-74] Resummation beneficial at C = 2
Linear Sphericity [72] (3, Einf'nY)

Energy Correlators [36, 75—77]

Energy Flow Polynomials [15, 17]
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Six Decades of Collider Techniques as EMD Geometry

[PTK, Metodiev, Thaler, JHEP 2020]

1960 2020

Patrick Komiske — Optimizing Particle Physics with Machine Learning (Timeline design by Eric Metodiev) 90
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Six Decades of Collider Techniques as EMD Geometry

[PTK, Metodiev, Thaler, JHEP 2020]

IRC-safety is continuity in the
space of events

*—o—0
Curing Infinities
1960 2020
1962 — 1964

Infrared Safety

[Kinoshita, JMP 1962;
Lee, Nauenberg, PR 1964]
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Six Decades of Collider Techniques as EMD Geometry

[PTK, Metodiev, Thaler, JHEP 2020]

IRC-safety is continuity in the Event shapes are distances
space of events from events and manifolds

‘ ‘ PO 0(5) = min EMDB’R(E,S/)

) EeM
Curing Infinities Event Shapes
1960 2020
1977
Thrust, Sphericity
1962 — 1964 [Farhi, PRL 1977;

Georgi, Machacek, PRL 1977
Infrared Safety =oTEh TRC® :

[Kinoshita, JMP 1962;
Lee, Nauenberg, PR 1964]
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Six Decades of Collider Techniques as EMD Geometry

IRC-safety is continuity in the Event shapes are distances Jets are projections onto low-
space of events from events and manifolds dimensional manifolds

O— » ()  O(E) = min EMDg r(£,&") Ins%(E) =argmin EMDg r(€,7)

) EeM JEPN
Curing Infinities Event Shapes Jet Algorithms
1960
1977 1997 — 1998
Thrust, Sphericity C/A Jet Clustering
1962 — 1964 [Farhi, PRL 1977; 1993

Georgi, Machacek, PRL 1977
Infrared Safety =oTEh TRC® :

[Kinoshita, JMP 1962; [Ellis, Soper, PRD 1993;
Lee, Nauenberg, PR 1964] Catani, Seymour, Dokshitzer,Webber, NPB 1993]

Wobisch,Wengler, 1998]

Patrick Komiske — Optimizing Particle Physics with Machine Learning

[Dokshitzer, Leder, Moretti,
kTJet Clustering Webber, JHEP 1997;

[PTK, Metodiev, Thaler, JHEP 2020]

2020

(Timeline design by Eric Metodiev) 90
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Six Decades of Collider Techniques as EMD Geometry

[PTK, Metodiev, Thaler, JHEP 2020]

IRC-safety is continuity in the Event shapes are distances Jets are projections onto low- et substructure probes
space of events from events and manifolds dimensional manifolds radiation within a jet

: O— » (D  O(£) = min EMDg r(&,&") j?@?ﬁr}f(f) = argmin EMDg r(€, )

€ £reM JEePN
Curing Infinities Event Shapes Jet Algorithms Jet Substructure
1960 2020
1977 1997 — 1998
1962 — 1964 Thrusfﬁjhﬁtff '.c;'7t7y; 1993 AU 2010 -2015

[Dokshitzer, Leder, Moretti, N . .
: . N-(sub)jetties, XCone
Infrared Safety kTJet Clusterlng Webber,jHEP 1997, ( )] ) ’

. . 962- . Wobisch,Wengler, 1998]  [Stewart, Tackmann, Waalewijin, PRL 2010;
[Kinoshita, JMP 1962; [Ellis, Soper, PRD 1993; Thaler,Van Tilburg, JHEP 201 I;

Lee, Nauenberg, PR 1964] Catani, Seymour, Dokshitzer,Webber, NPB 1993] Stewart, Tackmann, Thaler, Vermilion, Wilson, JHEP 2015]

Georgi, Machacek, PRL 1977]

Patrick Komiske — Optimizing Particle Physics with Machine Learning (Timeline design by Eric Metodiev) 90


https://doi.org/10.1007/JHEP07(2020)006

Six Decades of Collider Techniques as EMD Geometry

[PTK, Metodiev, Thaler, JHEP 2020]

IRC-safety is continuity in the Event shapes are distances Jets are projections onto low- et substructure probes Pileup mitigation moves away
space of events from events and manifolds dimensional manifolds radiation within a jet from the uniform event
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