Linear Jet Tagging with the Energy Flow Basis

Machine Learning for Jet Physics Workshop Berkeley, CA – December 12, 2017

Patrick T. Komiske III

Center for Theoretical Physics, Massachusetts Institute of Technology

Based on work with Eric M. Metodiev and Jesse Thaler

Outline

Lightning Review of EFPs

Comparison with Modern Machine Learning

Fast Computation of EFPs

EFP Review

EFP Essentials

$$EFP_G = \sum_{i_1=1}^M \cdots \sum_{i_N=1}^M z_{i_1} \cdots z_{i_N} \prod_{(k,\ell)\in G} \theta_{i_k i_\ell}$$
(1)
$$z_i = \frac{p_{T,i}}{\sum_i p_{T,i}}, \quad \theta_{ij} = (\Delta y_{ij}^2 + \Delta \phi_{ij}^2)^{\beta/2}$$

See Eric Metodiev's talk

- Jet substructure observables:
 - Fixed energy structure (necessary and sufficient for IRC safety)
 - Angular structure encoded by a multigraph G
 - Related to jet mass, ECFs, angularities, geometric moments, etc.
- Jet representation:
 - Complete, linear basis for IRC-safe information
 - Linearity of basis naturally suggests linear learning methods

Outline

Lightning Review of EFPs

Linear Classification with EFPs

Comparison with Modern Machine Learning

Fast Computation of EFPs

Linear Classification Overview

- \blacksquare Fit a decision plane, determined by a vector \boldsymbol{w}
 - Fisher's linear discriminant (LDA): closed-form solution
 - Logistic regression: Convex, iterative solution
- \blacksquare Decision threshold t is determined by distance from the plane
- $\blacksquare \ \mathcal{G}$ is finite set of graphs corresponding to the inputs
 - Organization by d is natural (equivalent to the order of the expansion)
 - Organization by N or χ also possible, (where is the information?)

$$\mathsf{Classifier} = \left\{ \left(t + \sum_{G \in \mathcal{G}} w_G \mathsf{EFP}_G \right) \begin{array}{l} \geq 0, & \mathsf{signal} \\ < 0, & \mathsf{background} \end{array} \right.$$

Linear Classification with EFPs

■ W vs. QCD jet classification (quark/gluon and top tagging in backup)

- 300k training samples
- Linear: Fisher's linear discriminant
 - num. params. = num. EFPs < 1000
 - 100k test samples
- DNN: Dense neural net
 - $(100 \text{ node fully-connected layer}) \times 3$
 - $\blacksquare \sim 120 {\rm k} \ {\rm parameters}$
 - 50k validation, 50k test samples

Which EFPs are Important?

- High-N EFPs are important for classification performance
- Great classification performance with just $\chi = 2$ EFPs!

Outline

Lightning Review of EFPs

Linear Classification with EFPs

Comparison with Modern Machine Learning

Fast Computation of EFPs

Modern Machine Learning Comparison

- Linear and DNN same as before
- CNN: Convolutional neural net
 - 33×33 jet images
 - (48 filters) $\times 3$
 - gray: p_T channel only
 - \blacksquare color: p_T and mult. channels
 - $\blacksquare ~\sim 80 {\rm k}$ parameters

• (Linear classification with EFPs) \sim (MML) for $\varepsilon_s \gtrsim 0.5!$

N-subjetiness: 1011.2268, N-subjetiness basis: 1704.08249, NN Review: 1709.04464

Modern Machine Learning Comparison

• (Linear classification with EFPs) \gtrsim (MML) for $\varepsilon_s \gtrsim 0.5$

Outline

Lightning Review of EFPs

Linear Classification with EFPs

Comparison with Modern Machine Learning

Fast Computation of EFPs

Linear Jet Tagging with EF Basis

Computational Complexity of ECF(G)s

$$\sum_{i_{1}=1}^{M} \cdots \sum_{i_{N}=1}^{M} E_{i_{1}} \cdots E_{i_{N}} \begin{cases} \prod_{i < j \in \{i_{1}, \dots, i_{N}\}} \theta_{ij}^{\beta}, & \mathsf{ECF}_{N}^{\beta} & 1305.0007 \\ \\ \prod_{i < j \in \{i_{1}, \dots, i_{N}\}}^{v} \min\{\theta_{ij}^{\beta}\}_{i < j \in \{i_{1}, \dots, i_{N}\}}, & v\mathsf{ECFG}_{N}^{\beta} & 1609.07483 \end{cases}$$

- Implementation of ECF(G) formula runs in time $\mathcal{O}(M^N)$
- With $M \sim 100$, ECF(G)_{N=4} \sim one hundred million operations
- \blacksquare N=4 is barely tractable, $N\geq 5$ is essentially inaccessible

Computational Complexity of ECF(G)s

$$\sum_{i_{1}=1}^{M} \cdots \sum_{i_{N}=1}^{M} E_{i_{1}} \cdots E_{i_{N}} \begin{cases} \prod_{i < j \in \{i_{1}, \dots, i_{N}\}} \theta_{ij}^{\beta}, & \mathsf{ECF}_{N}^{\beta} & 1305.0007 \\ \\ \prod_{i < j \in \{i_{1}, \dots, i_{N}\}}^{v} \min\{\theta_{ij}^{\beta}\}_{i < j \in \{i_{1}, \dots, i_{N}\}}, & v\mathsf{ECFG}_{N}^{\beta} & 1609.07483 \end{cases}$$

- Implementation of ECF(G) formula runs in time $\mathcal{O}(M^N)$
- With $M \sim 100$, ECF(G)_{N=4} \sim one hundred million operations
- N = 4 is barely tractable, $N \ge 5$ is essentially inaccessible

Computational Complexity of EFPs

- \blacksquare Like other energy correlators, EFPs are naively $\mathcal{O}(M^N)$
- Factorability of summand in EFP formula can speed up computation

Composite EFPs are products of prime EFPs

Computational Complexity of EFPs

- \blacksquare Like other energy correlators, EFPs are naively $\mathcal{O}(M^N)$
- Factorability of summand in EFP formula can speed up computation

$$\frac{2}{3} = \left(\sum_{i_{1}=1}^{M} \sum_{i_{1}=1}^{M} \sum_{i_{3}=1}^{M} z_{i_{1}} z_{i_{2}} z_{i_{3}} \theta_{i_{1}i_{2}}^{2} \theta_{i_{2}i_{3}} \right) \left(\sum_{i_{4}=1}^{M} \sum_{i_{5}=1}^{M} z_{i_{4}} z_{i_{5}} \theta_{i_{4}i_{5}}^{4} \right)$$
Composite EFPs are products of prime EFPs
$$= \underbrace{\sum_{i_{1}=1}^{M} \sum_{i_{2}=1}^{M} \sum_{i_{3}=1}^{M} \sum_{i_{4}=1}^{M} \sum_{i_{5}=1}^{M} \sum_{i_{6}=1}^{M} \sum_{i_{7}=1}^{M} \sum_{i_{8}=1}^{M} z_{i_{1}} z_{i_{2}} z_{i_{3}} z_{i_{4}} z_{i_{5}} z_{i_{6}} z_{i_{7}} z_{i_{8}} \theta_{i_{1}i_{2}} \theta_{i_{1}i_{3}} \theta_{i_{1}i_{4}} \theta_{i_{1}i_{5}} \theta_{i_{1}i_{6}} \theta_{i_{1}i_{7}} \theta_{i_{1}i_{8}}}{\mathcal{O}(M^{8})}$$

$$= \underbrace{\sum_{i_{1}=1}^{M} z_{i_{1}} \left(\sum_{i_{2}=1}^{M} z_{i_{2}} \theta_{i_{1}i_{2}} \right)^{7}}_{\mathcal{O}(M^{2})}$$

- 4

Variable Elimination (VE)

- Algorithm for finding optimal parentheses placement in EFP formula
- Reduces EFP computational complexity to $\mathcal{O}(M^{\chi})$:
 - Best case (NP-hard): $\chi = \texttt{treewidth}(G) + 1$
 - Heuristics can be used which work excellently for our small graphs
 - $\chi = 2$ for all tree graphs, $\chi = 3$ for single-cycle graphs, $\chi = N$ for K_N

EnergyFlow Python Package

- A convenient and simple package for efficient implementation of EFPs
- Currently written in pure Python using the NumPy library
 - Need a fast, arbitrary dimension multi-array
 - We've considered a C++ implementation (possible, but not simple)

Conclusions

- Linear classification with EFPs very comparable to MML methods
- \blacksquare Linear methods \implies very nice both theoretically and experimentally
 - EFP linear structure potentially allows for theoretical calculation
 - Fully differentiable model, uncertainty/error propagation simple
 - Convex, global minimum is guaranteed
 - No hyperparameters
 - Interesting methods made possible by linearity
 - Lasso regression for automatic feature selection
 - PCA, orthogonal subspaces, etc.
- Efficient computation of EFPs has been achieved
 - EnergyFlow Python package here, stay tuned for more
- EFPs potentially bridge MML performance & theory understanding

Additional Slides

Quark/Gluon, Top Linear Classification with EFPs

Quark/Gluon and Top Tagging N Sweep

Quark/Gluon and Top Tagging χ Sweep

N-Subjettiness Linear/DNN Comparison

VE Timing

- \blacksquare Test our implementation of VE averaged over all EFPs with $d \leq 7$
- This includes prime EFPs up to N = 8 ! (Imagine N = 8 ECF, OMG)

N		2	3	4	5	6	7	8
	2	7	12	33	50	65	48	23
χ	3		11	42	82	80	33	
	4			2	1			

Prime EFPs with $d \leq 7$