Energy Flow Networks: Deep Sets for Particle Jets

Patrick T. Komiske III

Massachusetts Institute of Technology Center for Theoretical Physics

Machine Learning for Jet Physics Workshop

Fermilab, Illinois – 11/15/2018

Based on work with Eric Metodiev and Jesse Thaler

1810.05165

https://energyflow.network

Jets as Point Clouds

Energy Flow Networks

Quark vs. Gluon Tagging

Jets as Point Clouds

Energy Flow Networks

Quark vs. Gluon Tagging

An unordered, variable length collection of particles

Due to quantum-mechanical indistinguishability Due to probabilistic nature of jet formation

$$J(\{p_1^{\mu},\ldots,p_M^{\mu}\}) = J(\{p_{\pi(1)}^{\mu},\ldots,p_{\pi(M)}^{\mu}\}),$$

$$\underbrace{M \ge 1}_{\text{Multiplicity}},$$

Permutations

p_i^{μ} represents *all* the particle properties:

- Four-momentum $(E, p_x, p_y, p_z)_i^{\mu}$
- Other quantum numbers (e.g. particle id, charge)
- Experimental information (e.g. vertex info, quality criteria, PUPPI weights)

Run: 279984 Event: 1079767163 2015-09-22 03:18:13 CEST

Point cloud: "A set of data points in space" – Wikipedia

LIDAR data from self-driving car sensor

Particle Collision Events as Point Clouds

Multi-jet event at CMS

Processing Point Clouds

Methods for processing point clouds/jets should respect the appropriate symmetries

Variable constituent multiplicity requires at least one of: Preprocessing to another representation (jet images, N-subjettiness, etc.) Truncation to an (arbitrary) fixed size Recurrent NN structure

Particle permutation symmetry requires:

Permutation symmetric observables Permutation symmetric architectures

Two key choices when analyzing jets

How to represent t	<u>:he jet</u>	How to analyze that representation
• Single expert observable		 Threshold cut
• A few expert observables		 Multidimensional likelihood
 Many expert observables 		 Boosted decision tree (BDT), shallow neural network (NN)
 Jet images 		 Convolutional NN (CNN)
 List of particles 		 Recurrent/Recursive NN (RNN)
 Clustering tree 		 Fancy RNN
• N-subjettiness basis		 Dense neural network (DNN)
• Energy flow polynomials	PTK ML4Jets 2017	Linear classification
Set of particles	PTK ML4Jets 2018	Energy flow network

Energy Flow Polynomials (EFPs)

 $\longrightarrow Z_{i_i}$

k

 $(k,\ell) \in G$

 $\theta_{i_k i_\ell}$

[PTK, Metodiev, Thaler, 1712.07124]

M

 $-_{l} \longleftrightarrow \theta_{i_{k}i_{l}} \quad \text{EFP}_{G} = \sum \cdots \sum z_{i_{1}} \cdots z_{i_{N}}$

M

 $i_1=1$ $i_N=1$

Jets as Point Clouds

Energy Flow Networks

Quark vs. Gluon Tagging

Deep Sets

Namespace for symmetric function parametrization

A general permutation-symmetric function is *additive* in a latent space

Deep Sets

[1703.06114]

Manzil Zaheer^{1,2}, Satwik Kottur¹, Siamak Ravanbhakhsh¹, Barnabás Póczos¹, Ruslan Salakhutdinov¹, Alexander J Smola^{1,2} ¹ Carnegie Mellon University ² Amazon Web Services

Deep Sets Theorem [63]. Let $\mathfrak{X} \subset \mathbb{R}^d$ be compact, $X \subset 2^{\mathfrak{X}}$ be the space of sets with bounded cardinality of elements in \mathfrak{X} , and $Y \subset \mathbb{R}$ be a bounded interval. Consider a continuous function $f: X \to Y$ that is invariant under permutations of its inputs, i.e. $f(x_1, \ldots, x_M) =$ $f(x_{\pi(1)}, \ldots, x_{\pi(M)})$ for all $x_i \in \mathfrak{X}$ and $\pi \in S_M$. Then there exists a sufficiently large integer ℓ and continuous functions $\Phi: \mathfrak{X} \to \mathbb{R}^{\ell}$, $F: \mathbb{R}^{\ell} \to Y$ such that the following holds to an arbitrarily good approximation:¹

$$f(\{x_1,\ldots,x_M\}) = F\left(\sum_{i=1}^M \Phi(x_i)\right)$$

Deep Sets

Namespace for symmetric function parametrization

A general permutation-symmetric function is *additive* in a latent space

General parametrization for a function of sets

Deep Sets for Particle Jets

[PTK, Metodiev, Thaler, 1810.05165]

IRC-safe latent space

Energy Flow Network (EFN)

 $\operatorname{EFN}(\{p_1^{\mu},\ldots,p_M^{\mu}\}) = F\left(\sum_{i=1}^M \boldsymbol{z_i} \Phi(\hat{p}_i)\right)$

Particle Flow Network (PFN)

$$\operatorname{PFN}(\{p_1^{\mu},\ldots,p_M^{\mu}\}) = F\left(\sum_{i=1}^{M} \Phi(p_i^{\mu})\right)$$

Fully general latent space

Particles

Observable

Latent Space IRC Safety

Latent space defines new physics observables

IRC safety is a key theoretical and experimental property of observables

QCD has soft and collinear divergences associated with gluon radiation

$$dP_{i \to ig} \simeq \frac{2\alpha_s}{\pi} C_a \frac{d\theta}{\theta} \frac{dz}{z} \qquad \qquad C_q = C_F = 4/3$$

$$C_q = C_A = 3$$

Infrared (IR) safety – observable is unchanged under addition of a soft particle

$$S(\{p_1^{\mu}, \dots, p_M^{\mu}\}) = \lim_{\epsilon \to 0} S(\{p_1^{\mu}, \dots, p_M^{\mu}, p_{M+1}^{\mu}\}), \quad \forall p_{M+1}^{\mu}$$

Collinear (C) safety – observable is unchanged under a collinear splitting of a particle $S(\{p_1^{\mu}, \dots, p_M^{\mu}\}) = S(\{p_1^{\mu}, \dots, (1-\lambda)p_M^{\mu}, \lambda p_{M+1}^{\mu}\}), \quad \forall \lambda \in [0, 1]$

Latent Space IRC Safety

Approximating Φ and F with Neural Networks

Employ neural networks as arbitrary function approximators

Use fully-connected networks for simplicity Default sizes $-\Phi$: (100, 100, ℓ), F: (100, 100, 100) Φ Particles Observable Per-Particle Representation **Event Representation** Latent Space Φ F+Φ Φ Energy/Particle Flow Network

Legend PFN PFN-ID 100 $\bigcirc F_S$ $\supset F_B$ 100 100 100 EFN: $\mathcal{O}_a = \sum_{i=1}^{\infty} z_i \Phi_a(y_i, \phi_i)$ MPFN: $\mathcal{O}_a = \sum_{i=1} \Phi_a(z_i, y_i, \phi_i, [\text{PID}_i])$ 16

Jets as Point Clouds

Energy Flow Networks

Quark vs. Gluon Tagging

Classification Performance

PFN: No particle type info, arbitrary energy dependence

EFN: IRC-safe latent space

PFN-ID slightly better than RNN-ID

EFN Latent Dimension Sweep

PFN-ID: Full particle flavor info $(\gamma, \pi^{\pm}, K^{\pm}, K_L, p, \bar{p}, n, \bar{n}, e^{\pm}, \mu^{\pm})$ PFN-Ex: Experimentally accessible info $(\gamma, h^{\pm,0}, e^{\pm}, \mu^{\pm})$ PFN-Ch: Particle charge info (+, 0, -)

PFN: No particle type info, arbitrary energy dependence

EFN: IRC-safe latent space

Energy Flow Network Visualization

EFN observables are two-dimensional geometric functions

Visualize EFN observables as *filters* in the translated rapidity-azimuth plane

Jet images as EFN filters

Moments as EFN filters

[Donoghue, Low, Pi, 1979] [Gur-Ari, Papucci, Perez, 2011]

[[]Cogan, Kagan, Strauss, Schwartzman, 2014] [de Oliviera, Kagan, Mackey, Nachman, Schwartzman, 2015]

Filter 1 Filter 2 Filter 3 Filter 4 ٠ Translated Azimuthal Angle ϕ <u>Filte</u>r 5 Filter 6 Filter 7 Filter 8 ۶ Filter 9 Filter 10 Filter 11 Filter 12 Filter 13 Filter 16 Filter 14 Filter 15

EFN (ℓ = 256) randomly selected filters, sorted by size

Generally see blobs of all scales

Local nature of activated region lends interpretation as "pixels"

EFN seems to have learned a dynamically sized jet image

Translated Rapidity y

ℓ = 8

 $\ell = 16$

l = 32

ℓ = 64

ℓ = 128

Measuring Q/G EFN Filters

Power-law dependence between filter size and distance from center is observed

Emission plane area element

Non-perturbative physics, axis recoil, higher order effects cause deviations from slope of 2

Visualizing Q/G EFN Filters in the Emission Plane

Extracting New Analytic Observables

EFN ($\ell = 2$) has approximately radially symmetric filters

Fit functions of the forms:

$$A_{r_0} = \sum_{i=1}^{M} z_i \, e^{-\theta_i^2/r_0^2}, \qquad B_{r_1,\beta} = \sum_{i=1}^{M} z_i \, \ln(1 + \beta(\theta_i - r_1))\Theta(\theta_i - r_1)$$

Separate soft and collinear phase space regions

Extracting New Analytic Observables

Can visualize F in the two dimensional $(\mathcal{O}_1, \mathcal{O}_2)$ phase space

Benchmarking New Analytic Observables

Individually, extracted observables are comparable to other angularities

Extracted C(A, B) performs nearly as well as EFN (ℓ = 2)

Meanwhile, multivariate combination (BDT) of three other angularities does not show improvement

Jets as Point Clouds

Point clouds have variable size and permutation symmetry

Energy Flow Networks

Deep Sets architecture, IRC-safe latent space

Quark vs. Gluon Tagging

Performance, visualization, new analytic observables

Patrick Komiske – Energy Flow Networks

Jets as Point Clouds

Point clouds have variable size and permutation symmetry

Energy Flow Networks

Deep Sets architecture, IRC-safe latent space

Quark vs. Gluon Tagging

Performance, visualization, new analytic observables

Versatility? Transparency? Verifiability? Robustness? Deployment?

EnergyFlow Python Package

Contains EFN and PFN implementations in Keras

CNN, DNN architectures included for easy model comparison

Includes quark/gluon jet samples used in [1810.01565]

Several detailed examples demonstrating how to train models and make visualizations

Do	ocs » Home
W	lelcome to EnergyFlow
En Po (Pf	ergyFlow is a Python package for a suite of particle physics tools for computing Energy Flow lynomials (EFPs) and implementing Energy Flow Networks (EFNs) and Particle Flow Networks FNs). Here are several of the features and functionalities provided by the EnergyFlow package:
•	Energy Flow Polynomials: EFPs are a collection of jet substructure observables which form a complete linear basis of IRC-safe observables. EnergyFlow provides tools to compute EFPs on events for several energy and angular measures as well as custom measures.
•	Energy Flow Networks: EFNs are infrared- and collinear-safe models designed for learning from collider events as unordered, variable-length sets of particles. EnergyFlow contains customizable Keras implementations of EFNs.
•	Particle Flow Networks: PFNs are general models designed for learning from collider events as unordered, variable-length sets of particles, based on the Deep Sets framework. EnergyFlow contains customizable Keras implementations of PFNs.
Be suj ad	yond the primary functions described above, the EnergyFlow package also provides useful oplementary features. These include a large quark/gluon jet dataset, implementations of ditional machine learning architectures useful for collider physics, and many examples exhibiting e usage of the package.
•	Jet Tagging Datasets: A dataset of 2 million simulated quark and gluon jets is provided.
•	Additional Architectures: Implementations of other architectures useful for particle physics are also provided, such as convolutional neural networks (CNNs) for jet images.
	Detailed Examples: Examples showcasing EFPs, EFNs, PFNs, and more. Also see the EFP Demo.

EnergyFlow Python Package

Contains EFN and PFN implementations in Keras

CNN, DNN architectures included for easy model comparison

Includes quark/gluon jet samples used in [1810.01565]

Several detailed examples demonstrating how to train models and make visualizations

Thank You!