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Jets as Point Clouds
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What is a Jet?

An unordered, collection of particles

Due to quantum-mechanical indistinguishability

J({p’f,...,p’&}) :J({p/;(l)’"WpZ(M)})v M > 1, ’ YWESMJ
Multiplicity Permutations

H : .
P; represents all the particle properties:

* Four-momentum — (E, p,, py, p.)5
* Other quantum numbers (e.g. particle id, charge)
* Experimental information (e.g. vertex info, quality criteria, PUPPI weights)
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Run: 279984
Event: 1079767163
2015-09-22 03:18:13 CEST

AlL

EXPERI

MEN

Patrick Komiske — Energy Flow Networks 5



Point Clouds

Point cloud: "A set of data points in space” —Wikipedia

LIDAR data from self-driving car sensor
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Particle Collision Events as Point Clouds

Point cloud: "A

set

Jet/event

Patrick Komiske — Point Cloud Strategies for Boosted Tops

of data points|in

space]' ~Wikipedia

Feature space

Multi-jet event at CMS



Processing Point Clouds

Methods for processing point clouds/jets should respect the
appropriate symmetries

requires at least one of:

Preprocessing to another representation (jet images, N-subjettiness, etc.)
Truncation to an (arbitrary) fixed size
Recurrent NN structure

Particle permutation symmetry requires:

Permutation symmetric observables
Permutation symmetric architectures
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Jet Representations «— Analysis Tools

Two key choices when analyzing jets

How to represent the jet

* Single expert observable

A few expert observables

Many expert observables

* Jet images

* List of particles

* Clustering tree

* N-subjettiness basis

* Energy flow polynomials

* Set of particles
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PTK ML4Jets 2017
PTK ML4Jets 2018

How to analyze that representation

Threshold cut

Multidimensional likelihood

Boosted decision tree (BDT), shallow
neural network (NN)

Convolutional NN (CNN)
Recurrent/Recursive NN (RNN)
Fancy RNN

Dense neural network (DNN)

 Linear classification

* Energy flow network



Energy Flow Polynomials (EFPs)

EFP¢ = Z Z Zi,

’Ll =
N
WV
Correlator of

Energies

M M M M M
2
- 5 v L 5 2 5 v L zilzizzi3zi4zi50i1i29i2i30i1i39i1i4921150z4z5
11=1190=113=114=115=1

10 -

Quark vs. Gluon
Pythia 8.226, /s = 13 TeV
R = 0.4, pr € [500,550] GeV
EFP 8=05,d<7

Inverse Gluon Jet Mistag Rate

10 4
1 —— EFPs, Lin. —— Nsubs, Lin.
EFPs, DNN Nsubs, DNN
1 == gray CNN =~ ==xer color CNN
1071 . . . .
0.0 0.2 0.4 0.6 0.8 1.0

Quark Jet Efficiency
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Particles

Observable

Per—Particle Representation Event Representation
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Deep Sets

Namespace for symmetric function parametrization

A general permutation-symmetric function is additive in a latent space

Deep Sets
[1703.061 14]

Manzil Zaheer!-2, Satwik Kottur!, Siamak Ravanbhakhsh',
Barnabas Péczos!, Ruslan Salakhutdinov', Alexander J Smola'-2
I Carnegie Mellon University 2 Amazon Web Services

Deep Sets Theorem [63]. Let X C R? be compact, X C 2% be the space of sets with bounded
cardinality of elements in X, and ¥ C R be a bounded interval. Consider a continuous
function f: X — Y that is invariant under permutations of its inputs, i.e. f(x1,...,xp) =
f(@ry, -+ 2rary) for all ; € X and m € Syy. Then there exists a sufficiently large integer

¢ and continuous functions ® : ¥ — Rf, F : RY — Y such that the following holds to an

arbitrarily good approximation:!

M

1=1
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Deep Sets

Namespace for symmetric function parametrization

A general permutation-symmetric function is additive in a latent space

Deep Sets

[1703.061 14]

Manzil Zaheer!-2, Satwik Kottur!, Siamak Ravanbhakhsh',
Barnabas Péczos!, Ruslan Salakhutdinov', Alexander J Smola'-2

/ \ilmegie Mellon University Amazon Web Services /\ Va ri a b I e I éen gth

Feature Space Deep Sets Theorem [63]. Let|X C R?|be compact,|X C 2% be the space of sets|with bounded
cardinality of elements in X, and ¥ C R be a bounded interval. Consider a continuous

function f: X — Y that is invariant under permutations of its inputs, i.e. f(x1,...,xp) =
— > [Ty, -+ Tr(ary) for all z; € X and 7 € SMI Then there exists a sufficiently large integer
Permutation 7 and continuous functions ® : X —|RY F :|RY|— Y such that the following holds to an
. . arbitrarily good approximation:!
invariance e

Latent space

General parametrization for a function of sets
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Deep Sets for Particle Jets

[PTK, Metodiev, Thaler, 1810.05165]

Particle Flow Network (PFN) Energy Flow Network (EFN)
PEN({p!,...,ph,}) = <Z<I> p ) EFN({p!,...,ph,}) = (Z d(p )
Fully general latent space IRC-safe latent space
Particles Observable
Per—Particle Representation Event Representation
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Energy/Particle Flow Network
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Latent Space IRC Safety

Latent space defines new physics observables
C safety is a key theoretical and experimental property of observables

QCD has soft and collinear divergences associated with gluon radiation

2043 do C1q :CF :4/3
. Fimvig = == Cay C,=Cy=3

— observable is unchanged under addition of a soft particle

SUPLs - Py ) = B SHPY, - Py Phgad)s VP

Collinear (C) safety — observable is unchanged under a collinear splitting of a particle

SHPL, - oy }) = SHPL, - (L= NP APyga }), VA E[0 1
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IRC safety is a statement of linearity in energy and
continuity in geometry

Theorem: A generic function of four-momenta can be made IRC safe via
the following replacement:

Z fpy) — Z 2 f(Pi)-

Proof: In 1810.05165.




Approximating ® and F with Neural Networks

Employ neural networks as arbitrary function approximators

Use fully-connected networks for simplicity

Default sizes — ®: (100, 100, £), F: (100, 100, 100)

Particles

Observable

Per—Particle Representation Event Representation

Latent Space
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Classification Performance

PFN-ID: Full particle flavor info
(7, ﬂia Ki’ KLap’p’ na ﬁa ei’ l’ti)

PFN-Ex: Experimentally accessible info

PFN: No particle type info, arbitrary
energy dependence

Quark vs. Gluon Jets
PYTHIA 8.230, /s = 14 TeV
R = 0.4, pr € [500,550] GeV

+0 = &
(v, h=", e, u™) EFN: IRC-safe latent space
PFN-Ch: Particle charge info

(+ 907_)

4.0 4.0
Quark vs. Gluon Jets
35 A PYTHIA 8.230, /s = 14 TeV 35
' better R = 0.4, pr € [500,550] GeV °

3.0 1

N
ot
|

Significance Improvement
DN
o
|

Significance Improvement

PEN-ID

- PFN-Ex
0.5 —— PFN-Ch EFN 0.5 —— DNN — == Multiplicity
—— PFN EFPs CNN —== nsp
0.0 . . . . 0.0 . . . .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Quark Jet Efficiency

Latent space dimension £ = 256

EFPs are comparable to EFN
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Quark Jet Efficiency
PFN-ID slightly better than RNIN-ID



EFN Latent Dimension Sweep

PFN-ID: Full particle flavor info PFN: No particle type info, arbitrary
+ gt A -
(v, 7=, K=, Ky, p,p,n, i, e=, ™) energy dependence
PFN-Ex: Experimentally accessible info
+0 + , %
(v, h=", e~ u EFN: IRC-safe latent space
PFN-Ch: Particle charge info
(+’Oa_)
4, better — . .
0.90 - ] Particle type info helpful
0.88 1 :I\
0.86
0.84 1 Quark vs. Gluon Jet
O |4 vark vs. xuon Jets IRC unsafe information clearly helpful
E:) 0.8 PyTHIA 8.230, /s = 14 TeV
' R = 0.4, pr € [500,550] GeV
0.80 g I
' —— PFN-ID
075 - —— PFN-Ex
—— PFN-Ch . o
0.76 PEN Performance saturates as dimension increases
i EFN
0.74 1

Latent Dimension
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Energy Flow Network Visualization

EFN observables are two-dimensional geometric functions

Visualize EFN observables as filters in the translated rapidity-azimuth plane

Jet images as EFN filters

Filter 1 Filter 2 Filter 3 Filter 4
RS
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Translated Rapidity y

[Cogan, Kagan, Strauss, Schwartzman, 2014]
[de Oliviera, Kagan, Mackey, Nachman, Schwartzman, 2015]
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[Donoghue, Low, Pi, 1979]
[Gur-Ari, Papucci, Perez, 201 | ]
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Visualizing Q/G EFN Filters

Generally see blobs of all scales

Local nature of activated region lends
interpretation as "pixels”

EFN seems to have learned a
dynamically sized jet image
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Translated Azimuthal Angle ¢

EFN (£ = 256) randomly selected filters, sorted by size

Filter 1 Filter 2 Filter 3 Filter 4
e M
Filter 5 Filter 6 Filter 7 Filter 8
- »
o )
Filter 9 Filter 10 Filter 11 Filter 12
5 * 5
Filter 13 Filter 14 Filter 15 Filter 16

Translated Rapidity y

»




Visualizing Q/G EFN Filters

Gener

Local
interp

EFN s
dynam

Simultaneous visualization strategy

C

Translated Azimuthal Angle ¢

=1

Translated Rapidity y

Translated Azimuthal Angle ¢

1

R =
) \ / @
= S
<
ove? :
= Ny — '
S 07 J O~ Translated Rapidity y i |
: ~
=
Z
£ —R/21

—R/2 0 R/2
Translated Rapidity y
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by size
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Visualizing Q/G EFN Filters

Patrick Komiske — Energy Flow Networks
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Visualizing Q/G EFN Filters

oy
~
DO

Translated Azimuthal Angle ¢
|
av
\
N o
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Energy Flow Network Latent Space (¢ = 256)

Translated Rapidity y

—R/2 0 R/2 R
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Measuring Q/G EFN Filters

Power-law dependence between filter size and
distance from center is observed

0

Slope of 2|is predicted at leading log

dln — dy| = 0%/dy do

Emission plane area element

R

|

Area element in rap-phi plane

Non-perturbative physics, axis recoil, higher
order effects cause deviations from slope of 2
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Radial Distance, In -
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EFN256: Quark vs. Gluon
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Visualizing Q/G EFN Filters in the Emission Plane

3.5

3.0
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Azimuthal Angle ¢
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Extracting New Analytic Observables

Filter 1 Filter 2

R/2 R/2

- 0.4

~R/2 ~R/2

Translated Azimuthal Angle ¢
o
L

Translated Azimuthal Angle ¢
o

- 0.2

-R

T T T L
—-R —R/2 0 R/2 R —R —R/2 0 R/2 R
Translated Rapidity y Translated Rapidity y

M M
O, = Z 2; ©1(6;) Oy = Z 2; D2(6;)
i—1 i—1

EFN (£ = 2) has approximately radially symmetric filters

Fit functions of the forms:

Radial Profile ®(0)

1.0

=
oo
]

e
D
1

=
IS
1

0.2

0.0 -

EFN3: Quark vs. Gluon
PYTHIA 8.230, /s = 14 TeV
R = 0.4, pr € [500,550] GeV

I Learned Filter ®4(6)
B Learned Filter ®5(6)
—— Closed-Form ®(0)

R/s

RI/4 31%/8 R/2

Radial Position 6

Take radial slices to obtain envelope

M M
Ay =z %m0, Brg=Y 2z In(l+B(0; —11)00; — 1)
1=1 =1

Separate soft and collinear phase space regions
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Extracting New Analytic Observables

Can visualize F in the two dimensional (O1, O2) phase space

Learned Observables

0.6 EFN2: Quark vs. Gluon
PYTHIA 8.230, /s = 14 TeV
0.5 1 R = 0.4, pr € [500,550] GeV
0.4 -
S 0.3 4 e  Quark
#  Gluon
0.2
0.1 - ;
0.0 - el] afocrennms
00 01 02 03 04 05 06 0.7

O,
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0.6

Closed-Form Observables

0.5 -
0.4 -
< 0.3 -
0.2 -

0.1 -

0.0 1

EFN2: Quark vs. Gluon
PYTHIA 8.230, /s = 14 TeV
R =04, pr € [500,550] GeV

Quark
Gluon

i @ smwao

1.00
0.86
- 0.71

- 0.57

=

- 043

- 0.29

0.0 01 02 03 O

B

4 05 06 0.7

0.14

0.00

Extract analytic form for F as (squared)
distance from a point:

C(A,B) = (A —ag)* + (B — by)?
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Benchmarking New Analytic Observables

Individually, extracted observables are
comparable to other angularities

Extracted C(A, B) performs nearly as well

as EFN (£ = 2)

Meanwhile, multivariate combination (BDT)
of three other angularities does not show

improvement
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Gluon Jet Rejection

1.0

= o
o 00

e
B

<
N

0.0

EFN2: Quark vs. Gluon
PYTHIA 8.230, /s = 14 TeV
R = 0.4, pr € [500, 550] GeV

EFN,
C(A, B)
Arg
B, 5
BDT (A1), \2), )\(1/2))
Angularity A\(M)
Angularity \(?)

----- Angularity \(1/2)

0.2 0.4 0.6 0.8
Quark Jet Efficiency
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Jets as Point Clouds

Point clouds have variable size and permutation symmetry

Energy Flow Networks

Deep Sets architecture, IRC-safe latent space

Quark vs. Gluon Tagging

Performance, visualization, new analytic observables
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Jets as Point Clouds

Point clouds have variable size and permutation symmetry

Particles Observable

/ _ §L|;J Late

- 5@?7@*@ o Energy Flow Networks

P 65 Deep Sets architecture, IRC-safe latent space
Energy/Particle Flow Network

Quark vs. Gluon Tagging

Performance, visualization, new analytic observables

Versatility? Transparency? Verifiability? Robustness? Deployment?
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EnergyFlow Python Package

Contains EFN and PFN implementations in Keras CNN, DNN architectures included
for easy model comparison

Includes quark/gluon jet samples used in [1810.01565]

Several detailed examples demonstrating how to train models and make visualizations

Docs » Home

EnergyFlow Welcome to EnergyFlow

Search docs EnergyFlow is a Python package for a suite of particle physics tools for computing Energy Flow
Polynomials (EFPs) and implementing Energy Flow Networks (EFNs) and Particle Flow Networks

Loma (PFNs). Here are several of the features and functionalities provided by the EnergyFlow package:

Nelcome to EnergvFlow . 2 2 =
Welcome to EnergyFio « Energy Flow Polynomials: EFPs are a collection of jet substructure observables which form a
R

eferences complete linear basis of IRC-safe observables. EnergyFlow provides tools to compute EFPs on
Copyright events for several energy and angular measures as well as custom measures.

« Energy Flow Networks: EFNs are infrared- and collinear-safe models designed for learning from
collider events as unordered, variable-length sets of particles. EnergyFlow contains customizable
Keras implementations of EFNs.

« Particle Flow Networks: PFNs are general models designed for learning from collider events as
unordered, variable-length sets of particles, based on the Deep Sets framework. EnergyFlow
contains customizable Keras implementations of PFNs.

Beyond the primary functions described above, the EnergyFlow package also provides useful
supplementary features. These include a large quark/gluon jet dataset, implementations of
additional machine learning architectures useful for collider physics, and many examples exhibiting
the usage of the package.

« Jet Tagging Datasets: A dataset of 2 million simulated quark and gluon jets is provided.

« Additional Architectures: Implementations of other architectures useful for particle physics are
also provided, such as convolutional neural networks (CNNs) for jet images.

« Detailed Examples: Examples showcasing EFPs, EFNs, PFNs, and more. Also see the EFP Demo.
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EnergyFlow Python Package

Contains EFN and PFN implementations in Keras CNN, DNN architectures included
for easy model comparison

Includes quark/gluon jet samples used in [1810.01565]

Several detailed examples demonstrating how to train models and make visualizations

@ Docs » Home l

https://energyflow.network

FAQ: « Particle Flow Networks: PFNs are general models designed for learning from collider events as
unordered, variable-length sets of particles, based on the Deep Sets framework. EnergyFlow
contains customizable Keras implementations of PFNs.

Energy Flow Polynomials

Beyond the primary functions described above, the EnergyFlow package also provides useful
supplementary features. These include a large quark/gluon jet dataset, implementations of
Ganaration additional machine learning architectures useful for collider physics, and many examples exhibiting
the usage of the package.

Utils

Datasets « Jet Tagging Datasets: A dataset of 2 million simulated quark and gluon jets is provided.

« Additional Architectures: Implementations of other architectures useful for particle physics are
also provided, such as convolutional neural networks (CNNs) for jet images.

« Detailed Examples: Examples showcasing EFPs, EFNs, PFNs, and more. Also see the EFP Demo.

Patrick Komiske — Energy Flow Networks
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Thank You!
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