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Unfolding Setup

Measurements are affected by detector effects of finite resolution and limited acceptance
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Unfolding Setup

Measurements are affected by detector effects of finite resolution and limited acceptance
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Simulation Generation

Learn detector response from trustable simulation
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Unfolding Setup

Measurements are affected by detector effects of finite resolution and limited acceptance

Detector-level Particle-level

(LY | e

ATLAS, CMS

GEANT, DELPHES PYTHIA, HERWIG, SHERPA

Simulation Generation

Synthetic

Learn detector response from trustable simulation

Truth-level measurements can be compared across experiments and to theoretical calculations

Goal of unfolding is to learn a generative particle-level model that reproduces the data
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Challenges with Traditional Unfolding

Previous methods are inherently binned

Binning fixed ahead of time, cannot be changed later
Performance of method sensitive to binning

Limited number of observables

Binning induces curse of dimensionality

Response matrix depends on auxiliary features

Detector-level quantity may not capture full detector effect
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Challenges with Traditional Unfolding

Previous methods are inherently binned

Binning fixed ahead of time, cannot be changed later
Performance of method sensitive to binning

Limited number of observables

Binning induces curse of dimensionality

Response matrix depends on auxiliary features

Detector-level quantity may not capture full detector effect

Example —Two jets acquiring the same mass in different ways

Jet 1 Jet2
Two hard prongs Hard core, diffuse spray
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Challenges with Traditional Unfolding

Previous methods are inherently binned Example with IBU

Binning fixed ahead of time, cannot be changed later ATLAS State-of-the-art Lund Plane Measurement
[ATLAS-CONF-2019-035]

Performance of method sensitive to binning
ATLAS Preliminary Vs =13 TeV, 139 fb!

v IE &
Limited number of observables - w2
Binning induces curse of dimensionality ] s

Response matrix depends on auxiliary features

Detector-level quantity may not capture full detector effect

Illl\\\\‘\\\\‘\\\lll
0 05 1 15 2 25 3 35 4 45 5
In(R/AR)

‘ I - 1 1 1 1 ‘ T | 1 1
107 107
AR = AR(emission, core)

Example —Two jets acquiring the same mass in different ways 21 x 15 bins in In(1/7) x In(R/AR)

Jet 1 Jet 2 — Must redo unfolding for other binnings e.g.
Two hard prongs Hard core, diffuse spray finer/coarser, kr (diagonal) binning, etc.
Limited to two observables
— 212 x |52 elements in response matrix R
— Going differential in n bins of p would
multiply size of R by n?
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Unfolding via Likelihood Reweighting

Likelihood ratio is optimal binary classifier by Neyman-Pearson lemma

D T L — likelihood ratio
L[(va)7 (w’,X’)](a:) — : ,X)( ) w — weights
P(w,X7) () X — phase space

x — element of X
p — probability density
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Unfolding via Likelihood Reweighting

Likelihood ratio is optimal binary classifier by Neyman-Pearson lemma

() L — likelihood ratio
L ) [(z) = w — weights
(:C) X — phase space

x — element of X
p — probability density

Model output of a well-trained classifier accesses likelihood ratio

Model[(w, X), (w’, X")](z) =~ . _II_J[I(;EJ(;U)?‘));SU(;AZ(;)(]/(;()QZ) Assuming softmax output

[Cranmer, Pavez, Louppe, 1506.02169; Andreassen, Nachman, 1907.08209]
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Unfolding via Likelihood Reweighting

Likelihood ratio is optimal binary classifier by Neyman-Pearson lemma

() L — likelihood ratio
L ) [(z) = w — weights
(:E) X — phase space

x — element of X
p — probability density

of a well-trained classifier accesses likelihood ratio

(0,0, X)) = 2L (00 X

Assuming softmax output

[Cranmer, Pavez, Louppe, 1506.02169; Andreassen, Nachman, 1907.08209]

OmniFold repeatedly reweights one weighted sample (A) to another (B)

Model|(wp, B), (wa, A)](x)
1 — Model[(wg, B), (wa, A)](x)

war(x) =wa(x) X A’ is statistically indistinguishable from B
Likelihood reweighting benefits from architectural improvements

Patrick Komiske — OmniFold



QA

OmniFold Algorithm — Schematic [Andreassen, PTK, Metodiev, Nachman, Thaler, 1911.09107]

OmniFold weights particle-level Gen to be consistent with Data once passed through the detector

Detector-level Particle-level
§ Data
=
2N
V4 \
9 . . .
= Simulation (Generation
5 L Y
E | = =
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QA

OmniFold Algorithm — Schematic [Andreassen, PTK, Metodiev, Nachman, Thaler, 1911.09107]

OmniFold weights particle-level Gen to be consistent with Data once passed through the detector

Detector-level Particle-level

§ Data
=
2N
V4 \

Step 1:

Un—1 M Wn
08 . . P 11 .
= Simulation | | Generation
5 o0
5 A3 =
>
N

Step 1 — Reweights Simy.1 to data, pulls weights back to particle-level Gen, 1
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QA

OmniFold Algorithm — Schematic [Andreassen, PTK, Metodiev, Nachman, Thaler, 1911.09107]

OmniFold weights particle-level Gen to be consistent with Data once passed through the detector

Detector-level Particle-level

§ Data
=
2N
V4 \

Step 1: Step 2:

Vn—1 M Wn Vn—1 _w_n_> Un
08 . . P 11 .
5 Simulation | | Generation
5 o0
: L3 |e—| &
m>‘ Push

Step 1 — Reweights Simy.1 to data, pulls weights back to particle-level Gen, 1
Step 2 — Reweights Geng.1 to (step 1)-weighted genn.1, pushes weights to detector-level Sim,
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QA

OmniFold Al go rithm — Eq uations [Andreassen, PTK, Metodiev, Nachman, Thaler, 1911.09107]
In » uts Detector-level Particle-level
(t,m) — pairs of Gen and Sim events
JoL . . _ Data
vy(1) — initial particle-level weights for Gen 5
B
— Data = \ )‘\\
Z \
Results of Steps | and 2
v, (1) — particle-level weights for Gen, nth iteration Step 1: Step 2:
Reweight Sim. to Data Reweight Gen.
w, (m) — detector-level weights for Sim, nt iteration Data " ‘
Upn—1 — Wn Un—1 —> Vp
.9 . . Pull Weights .
Pulling/Pushing Weights o Slmulft‘lon —— | Generation
. . Bl L8 |e—| & |«
a),lfu”(tg = w,(m) — pulling @, back to particle-level ) Push Weights
y’Eus (m) = v, (1) — pushing v/, to detector-level |—_LI—| |—_L|—|
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QA

OmniFold Al go rithm — Equations [Andreassen, PTK, Metodiev, Nachman, Thaler, 1911.09107]

In puts Detector-level Particle-level

(t,m) — pairs of Gen and Sim events

S . : Dat
vy(1) — initial particle-level weights for Gen 5 ar
B
— Data = \ )‘\\
Z \
Results of Steps | and 2
v, (1) — particle-level weights for Gen, nth iteration Step 1. Step 2:
Reweight Sim. to Data Reweight Gen.
w, (m) — detector-level weights for Sim, nt iteration Data " ‘
Upn—1 — Wn Un—1 —> Vp
.9 Sj e Pull Weights G .
Pulling/Pushing Weights 5 mlationl) . RS
. . g L )a\‘ —| & |«
a),lfu”(t) = w,(m) — pulling @, back to particle-level ) Push Weights
U,EUSh(m) = v, (1) — pushing v, to detector-level |—_LI—| |—_L|—|
OmniFold
h h a:
Step 1 — wy,(m) = v, x L[(1,Data), (v, Sim)](1m)

| Step 2 — v, (t) = v_1(t) x L[(wP™, Gen), (v,,_1, Gen)](t)

Unfold any* observable p.,(7) using universal weights v, ()

P ted () = V(1) X piien (1)

Patrick Komiske — OmniFold *Observables should be chosen responsibly



QA

OmniFold Al go rithm — Equations [Andreassen, PTK, Metodiev, Nachman, Thaler, 1911.09107]

In puts Detector-level Particle-level

(t,m) — pairs of Gen and Sim events

vy(1) — initial particle-level weights for Gen S D
— Data = \ )%
Z \
Results of Steps | and 2
v, (1) — particle-level weights for Gen, nth iteration Etfl?ghhm . Rwsf;tPGzn
w, (m) — detector-level weights for Sim, nth iteration Data " ‘
Upn—1 — Wn Un—1 —7 VUn
. . . .9 Sj e Pull Weights G .
Pulling/Pushing Weights 2 mmft‘lon — | Lvneraion
g L ¢ G <
a),lfu”(t) = w,(m) — pulling @, back to particle-level ) ’L\\ Push Weights %
U,EUSh(m) = v, (1) — pushing v, to detector-level —— ——
OmniFold
° ° . ’
Step 1w, (m) = VP x L[(1, Data), (""", Sim)](m) OmniFold is continuous IBU!

(See backup for IBU details)

| Step 2 — v, (t) = v_1(t) x L[(wP™, Gen), (v,,_1, Gen)](t)

Unfold any* observable p.,(7) using universal weights v,(7) After first iteration, with y(?) = I:
(TL) _ V1 (t)pGen (t) — /dmp(}en Sim (t|m) PDa a<m>
Punfolded (t) — Un (t) X PGen (t) | '

Patrick Komiske — OmniFold *Observables should be chosen responsibly 9
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Ingredients for Z + Jet Case Study

Z( = puTu~) + Jet Events

“Data” — HERWIG 7.1.5

MC — PYTHIA 8.243, tune 26
| .6 million events each after cuts

| Detector Simulation
CMS-like detector — DELPHES 3.4.2

Jets
Anti-k;, R = 0.4 — FASTJET 3.3.2
p% > 200 GeV, assume excellent
muon detector resolution

Datasets publicly available
— with two additional Pythia tunes @
—accessible via EnergyFlow

OmniFold Binder Demo (e)
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Ingredients for Z + Jet Case Study

Particles Observable
Z( — utu") + |et Events

( //t M ) J Per—Particle Representation Event Representation
“Data” — HERWIG 7.1.5 premrensesseneens S ,

i atent Space i
MC — PYTHIA 8.243, tune 26 i P -
| .6 million events each after cuts e \

77 Feoot] .

| Detector Simulation > o - 0¥ ® @J_ F

CMS-like detector — DELPHES 3.4.2 ‘ —

Jets / Ry E
Anti-k;, R = 0.4 — FASTJET 3.3.2 i O

p% > 200 GeV, assume excellent § | | oo
muon detector resolution

Energy/Particle Flow Network

[PTK, Metodiev, Thaler, 1810.05165]
[PTK, Talk at ML4Jets 2018]

Particle Flow Network (PFN) architecture
processes full radiation pattern of the event

— with two additional Pythia tunes

Datasets publicly available 3
—accessible via EnergyFlow

— PFN-Ex: (pr,y, ¢, PID) input features
- @ : (100, 100, 256) dense layers

. . - F: (100,100,100) dense layers
OmniFold Binder Demo cb — RelU activations, softmax output
— Categorical cross-entropy loss

— 20% validation sample

— 10 epoch patience ]
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OmniFolding Jet Substructure Observables

Single OmniFold instantiation vs. individual applications of IBU

e 0.30_'"|"'|"'|"'|"'|"'_ 3.0_---|---|---|---|---|---
0.06 | [1 “Data” 1 “Truth” - 1 “Data” D/T: HERWIG 7.1.5 default ) r 1 “Data” D/T: HERWIG 7.1.5 default
Sim. -=- Gen. ] o » S/G: PYTHIA 8.243 tune 26 | o » S/G: PYTHIA 8.243 tune 26
.S 0.05 —e [BU M »—s  OmniFold ] g 0.25 S,TTUth DELPHES 3.4.2 CMS Detector g 257 STruth DELPHES 3.4.2 CMS Detector
e ] = im. Z+jet: pZ > 200 GeV, R = 0.4 ] e [ im. Z+jet: pZ > 200 GeV, R =0.4 ]
Q N S T ] [ T y 1
s 0.04 [ D/T: HERWIG 7.1.5 default » 020F == Gen. . (}83 20F === Gen. ]
g vuEr S/G: PYTHIA 8.243 tune 26 2 [ o IBU In RERN ] n [ (8=1) ]
5 [ DELPHES 3.4.2 CMS Detector § [ 0 'Fpld / A § - IBU ny \ i
< 0.03F Z+jet: p% > 200 GeV, R = 0.4 © 015 " Omnitold , O 1.5F =—a OmniFold .
o [ ] T / z '
o= .5 N I
< [ — o '_
2 0.02 = 0.10 = MOt
z - 2 CH
0.01 0.05 “ 05
0.00 F 0.00 0.0 =
S 115F 2 LI5E 2. 115 E“ 14
2% 10Ff EE 1.0 F 25 10 | —
< H C < C = F; : ,{,
M- 085 F - 0.85F - el
i L : 1 | L L | L L L | - L | L L lﬂ m 085 i L '!Iﬂnl , , , | , , , | , , , | , , , | , , ,
0 20 40 60 80 -4 -12 -0 -8 -6 -4 -2 00 02 04 06 08 1.0 1.2
Jet Constituent Multiplicity M Soft Drop Jet Mass In p N-subjettiness Ratio 7_2(15:1)
IRC unsafe IRC safe Sudakov safe

OmniFold equals or outperforms IBU

Five unfolding iterations in all cases

Statistical uncertainties on prior shown in ratio
(See backup for more distributions)

Patrick Komiske — OmniFold |12



OmniFold Results by Event Representation

User is free to choose event representation in the OmniFold procedure

OMNIFOLD — full phase space information

MULTIFOLD — multiple observables

UNIFOLD - single observable, essentially unbinned IBU

Evaluate performance using

Observable triangular discriminator
Method m M w Inp T21 Zg 1 (p(A) — q(N))?
Alp,q) = = 10°
OMNIFOLD | 2.77 0.53 | 0.68 (-4 2/ ORI
: MurtiFoLp| 3.80 | 0.89
UNIFoLD 8.82 1.46 0.59 1.11 0.59 S|ng|e MULTIFOLD training
1BU 9.1 | 1.51 0.71 | 1.10 | 0.37 based on all six observables
Data 24.6 130 15.7 | 14.2 11.1 3.76
Generation | 3.62 15 22.4 19 20.8 | 3.84
mass  mult.  width T . N-subj.ratio UNIFOLD is similar to or
groomed mass outperforms IBU

OMNIFOLD/MULTIFOLD outperform IBU on all observables!

Patrick Komiske — OmniFold



Unfolding Beyond Observables

Energy Mover’s Distance (EMD)

is @ metric on the space of events
[PTK, Metodiev, Thaler, 1902.02346]

EMD enables calculating
correlation dimension of jets

dim = 2

dim = 1

9
dim(Q) = Q% In ZZ w;wj|O(EMD(E;, &)) < Q)
v

T

Weighted events naturally accommodated

(See yesterday’s talks by Eric Metodiev and Jack Collins)

Patrick Komiske — OmniFold




Unfolding Beyond Observables

Energy Mover’s Distance (EMD)

is @ metric on the space of events
[PTK, Metodiev, Thaler, 1902.02346]

EMD enables calculating
correlation dimension of jets

dim = 2

dim = 1

9
dim(Q) = Q% In ZZ w;wj|O(EMD(E;, &)) < Q)
v

T

Weighted events naturally accommodated

(See yesterday’s talks by Eric Metodiev and Jack Collins)
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Unfolding Beyond Observables

Energy Mover’s Distance (EMD)

is @ metric on the space of events
[PTK, Metodiev, Thaler, 1902.02346]

EMD enables calculating
correlation dimension of jets

dim = 1 dim = 2
// N L
dim — 0

9
dim(Q) = Q@ In ZZ w;wj|O(EMD(E;, &)) < Q)
(2

T

Weighted events naturally accommodated

(See yesterday’s talks by Eric Metodiev and Jack Collins)

Patrick Komiske — OmniFold

Correlation Dimension

—1

—  “Data” “Truth”

7
" Sim. - = Gen.
—  OmniFold ]

D/T: HERWIG 7.1.5 default
S/G: PYTHIA 8.243 tune 26 ]
DELPHES 3.4.2 CMS Detector 2

; Z+jet: pZ > 200 GeV, R = 0.4 ]
3 E Pt > 500 GeV, scaled to 500 GeV -
: AN
2r
1E

Energy Scale Q) [GeV]

Same OmniFold training can unfold a
complicated function of pairs of events!

Larger detector effects and
loss of stats seen at low QO



Detector-level Particle-level

Unfolding Basics

Measurements are unfolded to mitigate detector effects

Natural

§ [ Simiaon Generation Standard unfolding is binned and low-dimensional
g P =
I 1

OmniFold

ML-based method simultaneously unfolds all observables
Unbinned, full phase-space information

Z + Jet Case Study

MC study of a realistic measurement with public datasets

OmniFold, MultiFold, UniFold ready for action

Patrick Komiske — OmniFold |15



OmniFold Etymology

The Mountain sat upon the Plain
In his tremendous Chair —

His observation omnifold,

His inquest, everywhere —

The Seasons played around his knees
Like Children round a sire —
Grandfather of the Days is He

Of Dawn, the Ancestor —

Emily Dickinson, #975
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OmniFold Etymology

The Mountain sat upon the Plain
n his tremendous Chair —

His observation omnifold,

His inquest, everywhere —

The Seasons played around his knees
Like Children round a sire —
Grandfather of the Days is He

Of Dawn, the Ancestor —

Emily Dickinson, #975

Patrick Komiske — OmniFold

Kluge OmniFold 3000 Automatic Folding and Gluing System



Patrick Komiske — OmniFold

Additional Slides



Future Directions

Challenges

Dealing with detector inefficiencies
Apply more restrictive cuts after unfolding

Include gen/sim pairs with empty events in the training

Systematic uncertainties
Existing strategies should reasonably carry over

Parametrize high-dimensional systematic uncertainties, see [Nachman, 1909.03081]

Opportunities

Training ML models on unfolded data

OmniFold allows any model that can be defined on weighted data to be unfolded

OmniFold and CMS Open Data
CMS 201 1A Jet dataset processed into simple to use HDFS files

Patrick Komiske — OmniFold



Iterated Bayesian Unfolding (IBU)

Histogram-based unfolding method for a small number of observables

Choose observable(s) and binning at detector-level and particle-level

measured distribution: 772, = Pr(measure 1) true distribution: t§-0) = Pr(truth is 7)

Calculate response matrix R;; from generated/simulated pairs of events

R;; = Pr(measure i | truth is j) R is in general non-square and non-invertible

Calculate new particle-level distribution using Bayes’ theorem

(2

Rz’ .t('n—l)
t§n) = ZPr(truthn_l is j | measure ) X Pr(measure i) = Z L oDy
i 2 B,

Iterate procedure to remove dependence on prior

[Richardson, 1972; Lucy, 1974; D’Agostini, 1995]

Patrick Komiske — OmniFold 19




Additional OmniFolded Distributions

I
o
S
L

e [IBUm

e
@)
Ot
LI
-~
-

=)

e}

=~
T

Normalized Cross Section [GeV 1]
@]
o
w

1 “Data” —
Sim. - ]
=—a (mniFold 1]

D/T: HERWIG 7.1.5 default
S/G: PYTHIA 8.243 tune 26
DELPHES 3.4.2 CMS Detector
Z+jet: pZ > 200 GeV, R = 0.4

T T —]
“Truth”
Gen. ]

0.02

0.01

0.00 F : — —
N et
28 085 ;ﬁ"w_... £

Jet Mass m [GeV]

Jet mass affected
by particle masses

Patrick Komiske — OmniFold

Normalized Cross Section

Ratio to
Truth

o 77 7T
[ A 1 “Data” 1 “Truth”
\ )

g I \‘ Sim. --- QGen.
I “ —e JBU w =—a (OmniFold |
I \ |
- 1 D/T: HERWIG 7.1.5 default

6 S/G: PYTHIA 8.243 tune 26

DELPHES 3.4.2 CMS Detector

-~
-
—
———

6 D/T: HERWIG 7.1.5 default

Z+jet: p# > 200 GeV, R = 0.4 |

Normalized Cross Section

i
f

H
(en)
|
o
=H

0.85F
PR R TR T [ RN TR TN S N S N 1 1 PO SR R T TR TR TR T NN SR TR N1

Ratio to
Truth

0.0 0.1 0.2 0.3 0.4 0.5
Jet Width w

IRC-safe observables
easier to unfold

1 “Data” 1 “Truth”
i Sim. ---  Gen.
e~ IBU z,4 =—a (OmniFold

- -

\ S/G: PYTHIA 8.243 tune 26
DELPHES 3.4.2 CMS Detector |
Z+jet: pZ > 200 GeV, R = 0.4

0.0 0.1 0.2 0.3 0.4 0.5
Groomed Jet Momentum Fraction z,

Z, remarkably stable
under choice of method



The Energy Mover’s Distance (EMD)

[PTK, Metodiev, Thaler, 1902.02346]

EMD between energy flows defines a metric on the space of events

0;;
EMD(E,E") = {;?Lng}xxfijfj ZEZ B ZE§
jZ i () J

Cost of optimal transport Cost of energy creation

Zfz’j < Ej, Zfij < E, Zfij = min (Z E;, ZE;) Qij/'
j i ij i j fig

® Top Jet 1 ® Top Jet 2

[
R 1 1
. 1
1
el -
. 1
4 1 / !
- ., &
*

- ] = 0‘ 1
< ' . ‘e, '
5 ' : - :
< 1 r !
= 0 1 ] 1
L] . 1
g : e 1
S| - . 1

< 1 o*
1 «s* 1
—R/24 - 1 1
' 1
. 1
. ' 1
EMD: 125.4 GeV ' .

-R 1

R _R/2 0 R/2 R
Rapidity y Triangle inequality satisfied for R > diax/2

Patrick Komiske — The Metric Space of Collider Events 0 <EMD(&,E") <EMD(E,£") + EMD(E”, &)



Manifold Dimensions of Event Space

Correlation dimension: how does the # of
elements within a ball of size Q change?

dim = 1 /\\

. d
Nneigh.(Q) X lem — dlm(Q) — Q@ In Nneigh.(Q)

Correlation dimension lessons:
Decays are "constant” dim. at low Q

Patrick Komiske — The Metric Space of Collider Events

Correlation Dimension

0

cmey:Qgng:Z]xEMthyﬂ<gn

EMD: Intrinsic Dimension
PYTHIA 8.235, /s = 14 TeV
R = 1.0, pr € [500,550] GeV
—— Top jets
1 .. — W jets
expect 3 + 1
........... -+ Decays
expect 1 + 1 .
- LETL LA —
10! 10° 10°

Energy Scale @Q (GeV)

[Grassberger, Procaccia, PRL 1983; PTK, Metodiev, Thaler, 1902.02346] 7»




Manifold Dimensions of Event Space

Correlation dimension: how does the # of
elements within a ball of size Q change?

dim = 1 /\\

dim — 0 dim =0
| | d
Nneigh.(Q) X lem — dlm(Q) — Q@ In Nneigh.(Q)

Correlation dimension lessons:

Decays are "constant” dim. at low Q
Complexity hierarchy: QCD <W <Top
Fragmentation increases dim. at smaller scales

Patrick Komiske — The Metric Space of Collider Events

Correlation Dimension

cmey:Qgng:Z]xEMthyﬂ<gn

~
\\ EMD: Intrinsic Dimension
7 - \\ PYTHIA 8.235, /s = 14 TeV
S o \\ R = 1.0, pr € [500,550] GeV
\
\
0 - \\ \
N \ NSNe="N .
\ \ AN — Top jets
\ \ ,’ ‘ . .
Lo N T T Wets
'~‘o¢“"a<~~‘ \g —— QCD jets
47 NN 1
D \ -
. D \
\ \
3 - \ \\ !
\ \ \ = === Partons
S ) LI
.......... N { »+ "= Decays
2 L I I R A W he “‘ \ -
\ . .
\\ \\; \ -
“ ‘ ‘l
1 - AT
e Ve
VNN
\\0.* O‘
0 - it MNP
10! 102

Energy Scale @Q (GeV)

[Grassberger, Procaccia, PRL 1983; PTK, Metodiev, Thaler, 1902.02346] 53




Manifold Dimensions of Event Space

Correlation dimension: how does the # of
elements within a ball of size Q change?

dim = 1 /\\

\% /

dim — 0 dim =0
| | d

Nneigh.(Q) X lem — dlm(Q) — Q@ In Nneigh.(Q)

Correlation dimension lessons:
Decays are "constant” dim. at low Q
Complexity hierarchy: QCD <W <Top
Fragmentation increases dim. at smaller scales
Hadronization important around 20-30 GeV

Patrick Komiske — The Metric Space of Collider Events

dim(Q) = Q% In ZZ@(EMD(&-, £ <Q)

~
\\ EMD: Intrinsic Dimension
7 - \\ PYTHIA 8.235, /s = 14 TeV
'\ o A R = 1.0, pr € [500,550] GeV
N\ \
6 7 \\
= N x S, :
= N N RN —— Top jets
51 A\ W S\ — Woets
5 PS4 “‘\ .q--..\.\-‘.-“ \‘ ‘_‘ QCD jets
- 4 A \ \ “_
S X\ 1
= s N \‘ — Hadrons
% 3 - \\\ \\\ \‘ ——=- Partons
ST N \1E e Decays
2 I e R \‘\ ““ ‘ -
\\ \\; \
“ ‘
1 - NI L i)
‘&. \
0 1 1 1 1 1 1 1 1 I \‘ - — I- = -I 1
10t 102 103

Energy Scale @Q (GeV)

[Grassberger, Procaccia, PRL 1983; PTK, Metodiev, Thaler, 1902.02346] 74




Quark and Gluon Correlation Dimensions

Leading log (single emission) calculation:

Quark

Cr=4/3

Jo'p Q
Cz' In
1 T pr/2
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Patrick Komiske — The Metric Space of Collider Events

Correlation Dimension

dim(Q) = Q% In ZZ@(EMD(&-, £ <Q)

PRELIMINARY EMD: Intrinsic Dimension
PyYTHIA 8.230, /s = 14 TeV

R =1.0, pr ~ 500 GeV
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