The (Metric) Space of Collider Events

Patrick T. Komiske III

Massachusetts Institute of Technology Center for Theoretical Physics

with Eric Metodiev and Jesse Thaler, 1902.02346

Elementary Particle Theory Seminar – Maryland Center for Fundamental Physics University of Maryland, College Park March 25, 2019

Collider Event Foundations

The Energy Mover's Distance

Particle Physics Applications

Collider Event Foundations

The Energy Mover's Distance

Particle Physics Applications

Fascinating Event Topologies at the LHC

New physics searches involve complicated final states including jets (collimated sprays of hadrons)

CMS hadronic $t\overline{t}$ event

ATLAS high jet multiplicity events

Jet Formation in Theory

Hard collision

Good understanding via perturbation theory

Fragmentation

Semi-classical parton shower, effective field theory

Hadronization

Poorly understood (non-perturbative), modeled empirically

Fragmentation partons @ @ @ d ...

00000

Cartoon of jet formation as a multi-scale process

Hadronization

hadrons $\pi^{\pm}K^{\pm}$...

Collision

Detection

Jet Detection in Experiment

What information is both theoretically and experimentally robust?

Events, Theoretically

 $|\mathcal{E}\rangle = |(p_1^{\mu}, \vec{q_1}); (p_2^{\mu}, \vec{q_2}); \ldots\rangle$

quantum state?

parton branching history?

Events, Experimentally

O(10 million) electrical signals?

set PF candidates?

robust to fragmer

The energy flow (distribution of energy) is robust to fragmentation, hadronization, detector effects

Energy Flow \leftrightarrow Infrared and Collinear Safe Information

Energy Flow

Particle Physics Histograms

[PTK, Metodiev, Thaler, <u>1902.02346</u>]

Particle Physics Histograms

Three "most" representative jets in each bin

[PTK, Metodiev, Thaler, <u>1902.02346</u>]

Boosted W Jets

Abstract space of W jets

[PTK, Metodiev, Thaler, <u>1902.02346</u>]

Boosted W Jets

Gray contours represent the density of jets

Each circle is a particular W jet

Abstract space of W jets

[PTK, Metodiev, Thaler, 1902.02346]

Collider Event Foundations

IRC-safe energy flow is theoretically and experimentally robust

The Energy Mover's Distance

Particle Physics Applications

Collider Event Foundations

IRC-safe energy flow is theoretically and experimentally robust

The Energy Mover's Distance

Particle Physics Applications

The Earth Mover's Distance

A metric on normalized distributions in a space with a ground distance measure

symmetric, non-negative, triangle inequality, zero iff identical

The minimum "work" (stuff x distance) required to transport supply to demand

Related to optimal transport theory – commonly used as a metric on the space of images

[Peleg, Werman, Rom, IEEE 1989; Rubner, Tomasi, Guibas, ICCV 1998, ICJV 2000; Pele, Werman, ECCV 2008; Pele, Taskar, GSI 2013]

The Earth Mover's Distance

A metric on normalized distributions in a space with a ground distance measure

symmetric, non-negative, triangle inequality, zero iff identical

The minimum "work" (stuff x distance) required to transport supply to demand

Related to optimal transport theory – commonly used as a metric on the space of images

[Peleg, Werman, Rom, IEEE 1989; Rubner, Tomasi, Guibas, ICCV 1998, ICJV 2000; Pele, Werman, ECCV 2008; Pele, Taskar, GSI 2013]

The Energy Mover's Distance

EMD between energy flows defines a metric on the space of events

Mathematics of the Earth Mover's Distance

p-Wasserstein distance is a metric on probability distributions

Wasserstein Generative Adversarial Networks

[Arjovsky, Chintala, Bottou, <u>1701.07875</u>; in particle physics:

- Erdmann, Geiger, Glombitza, Schmidt, 1802.03325
- Erdmann, Glombitza, Quast, <u>1807.01954</u>]

Wasserstein(-Wasserstein) Autoencoders

[Tolstikhin, Bousquet, Gelly, Shoelkopf, <u>1711.01558</u>] [Zhang, Gao, Jiao, Liu, Wang, Yang, <u>1902.09323</u>]

Collider Event Foundations

IRC-safe energy flow is theoretically and experimentally robust

The Energy Mover's Distance

Quantifies the difference in energy flow between events

Particle Physics Applications

Collider Event Foundations

IRC-safe energy flow is theoretically and experimentally robust

The Energy Mover's Distance

Quantifies the difference in energy flow between events

Particle Physics Applications

Quantifying Event Modifications

[PTK, Metodiev, Thaler, <u>1902.02346</u>]

Mathematics

I-Wasserstein metric bounds the difference in expectation values between distributions

Physics

Events close in EMD are close according to

IRC-safe observables

$$\operatorname{EMD}(\mathcal{E}, \mathcal{E}') \geq \frac{1}{RL} \left| \sum_{i} E_{i} \Phi(\hat{p}_{i}) - \sum_{j} E_{j}' \Phi(\hat{p}_{j}') \right| = \frac{1}{RL} \left| \mathcal{O}(\mathcal{E}) - \mathcal{O}(\mathcal{E}') \right|$$

via Kantorovich-Rubinstein duality

Additive IRC-safe observable

Quantifying Event Modifications

[PTK, Metodiev, Thaler, <u>1902.02346</u>]

Mathematics

I-Wasserstein metric bounds the difference in expectation values between distributions

Physics

Events close in EMD are close according to

IRC-safe observables

$$\operatorname{EMD}(\mathcal{E}, \mathcal{E}') \geq \frac{1}{RL} \left| \sum_{i} E_{i} \Phi(\hat{p}_{i}) - \sum_{j} E_{j}' \Phi(\hat{p}_{j}') \right| = \frac{1}{RL} \left| \mathcal{O}(\mathcal{E}) - \mathcal{O}(\mathcal{E}') \right|$$

via Kantorovich-Rubinstein duality

Additive IRC-safe observable

Quantifying Event Modifications

[PTK, Metodiev, Thaler, <u>1902.02346</u>]

Mathematics

I-Wasserstein metric bounds the difference in expectation values between distributions

Physics

Events close in EMD are close according to

IRC-safe observables

$$\operatorname{EMD}(\mathcal{E}, \mathcal{E}') \geq \frac{1}{RL} \left| \sum_{i} E_{i} \Phi(\hat{p}_{i}) - \sum_{j} E_{j}' \Phi(\hat{p}_{j}') \right| = \frac{1}{RL} \left| \mathcal{O}(\mathcal{E}) - \mathcal{O}(\mathcal{E}') \right|$$

via Kantorovich-Rubinstein duality

Additive IRC-safe observable

Visualizing the Metric Space of W Jets

Embed high-dimension manifold in low-dimensional space?

W Jet

Constraints: W Mass and $\phi = 0$ preprocessing

t-Distributed Stochastic Neighbor Embedding

Visualizing the Metric Space of W Jets

Embed high-dimension manifold in low-dimensional space?

> W Jet 1-z θ

Constraints: W Mass and $\phi = 0$ preprocessing

t-Distributed Stochastic Neighbor Embedding

Manifold Dimensions of Event Space

Manifold Dimensions of Event Space

Correlation dimension: how does the # of elements within a ball of size Q change?

$$\dim(Q) = Q \frac{\partial}{\partial Q} \ln \sum_{i} \sum_{j} \Theta(\text{EMD}(\mathcal{E}_{i}, \mathcal{E}'_{j}) < Q)$$

Manifold Dimensions of Event Space

Correlation dimension: how does the # of elements within a ball of size Q change?

$$\dim(Q) = Q \frac{\partial}{\partial Q} \ln \sum_{i} \sum_{j} \Theta(\text{EMD}(\mathcal{E}_{i}, \mathcal{E}'_{j}) < Q)$$

Quark and Gluon Correlation Dimensions

Visualizing Jets with CMS Open Data

CMS opendata CERN MOD

Identifying Representative Jets

medoid: element selected to best represent a set of elements k-medoids: k clusters to minimize total distance of points to medoids

[[]PTK, Metodiev, Thaler, 1902.02346]

Jet Classification via Nearest-Neighbor Density Estimation

comparison to Thaler, Van Tilburg, <u>1011.2268</u>, <u>1108.2701</u>; PTK, Metodiev, Thaler, <u>1712.07124</u>, <u>1810.05165</u>;]

Collider Event Foundations

IRC-safe energy flow is theoretically and experimentally robust

The Energy Mover's Distance

Quantifies the difference in energy flow between events

Particle Physics Applications

Quantifying modifications, visualizing and exploring event space

Further Directions

Experimental

Quantify (or even mitigate?) pileup/detector effects Non-parametric density estimates (unfolding?) Automated data compression (triggering?)

Theoretical

Define new observables with EMD? Precision QCD calculations of event space geometry? Event Mover's Distance between ensembles?

Algorithmic

Loss function for modern ML in particle physics? Metric trees to turn $O(N^2)$ into $O(N \log N)$?

BOSTON 2019

[BOOST 2019, July 22-26, MIT]

Phenomenology | Reconstruction | Searches | Algorithms | Measurements | Calculations Modeling | Machine Learning | Pileup Mitigation | Heavy-Ion Collisions | Future Colliders

EnergyFlow Python Package

https://energyflow.network

Parallelized EMD calculations via the Python Optimal Transport library

Keras implementations of EFNs, PFNs, DNNs, CNNs, efficient EFP computation

Several detailed <u>examples</u> and <u>demos</u> for common use cases and visualization procedures

Backup Slides

Connection to N-subjettiness

[slide from talk by J.Thaler]

[JDT, Van Tilburg, <u>1011.2268</u>, <u>1108.2701</u>; based on Brandt, Dahmen, <u>ZPC 1979</u>; Stewart, Tackmann, Waalewijn, <u>1004.2489</u>]

Pileup Removal with Machine Learning (PUMML) and EMD

PUMML with jet images

- pixel-based loss function
- compared specific IRC-safe observables

PUMML with EMD

- no pixelation
- related to all IRC-safe observables

[PTK, Metodiev, Nachman, Schwartz, 1707.08600]

Patrick Komiske – The (Metric) Space of Collider Events

Stress-Energy Flow Operator

Stress-energy flow – measure of event/jet structure that is robust to non-perturbative and detector effects

[Sveshnikov, Tkachov, hep-ph/9512370; Hofman, Maldacena, 0803.1467; Mateu, Stewart, Thaler, 1209.3781; PTK, Metodiev, Thaler, 1712.07124, 1810.05165]